Sum of Two Odd Powers
Jump to navigation
Jump to search
Theorem
Let $\F$ be one of the standard number systems, that is $\Z, \Q, \R$ and so on.
Let $n \in \Z_{\ge 0}$ be a positive integer.
Then:
\(\ds a^{2 n + 1} + b^{2 n + 1}\) | \(=\) | \(\ds \paren {a + b} \sum_{j \mathop = 0}^{2 n} \paren {-1}^j a^{2 n - j} b^j\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a + b} \paren {a^{2 n} - a^{2 n - 1} b + a^{2 n - 2} b^2 - \dotsb - a b^{2 n - 1} + b^{2 n} }\) |
Proof
\(\ds a^{2 n + 1} + b^{2 n + 1}\) | \(=\) | \(\ds a^{2 n + 1} - \paren {-\paren {b^{2 n + 1} } }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds a^{2 n + 1} - \paren {-b}^{2 n + 1}\) | as $n$ is odd | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a - \paren {-b} } \sum_{j \mathop = 0}^{2 n} a^{2 n - j} \paren {-b}^j\) | Difference of Two Powers | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a + b} \sum_{j \mathop = 0}^{2 n} \paren {-1}^j a^{2 n - j} b^j\) | simplifying |
$\blacksquare$
Examples
Sum of Two Cubes
- $x^3 + y^3 = \paren {x + y} \paren {x^2 - x y + y^2}$
Sum of Two Fifth Powers
- $x^5 + y^5 = \paren {x + y} \paren {x^4 - x^3 y + x^2 y^2 - x y^3 + y^4}$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 2$: Special Products and Factors: $2.21$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 2$: Special Products and Factors: $2.21.$