Triple Angle Formulas/Sine
Jump to navigation
Jump to search
Theorem
- $\sin 3 \theta = 3 \sin \theta - 4 \sin^3 \theta$
where $\sin$ denotes sine.
Proof 1
\(\ds \sin 3 \theta\) | \(=\) | \(\ds \map \sin {2 \theta + \theta}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sin 2 \theta \cos \theta + \cos 2 \theta \sin \theta\) | Sine of Sum | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {2 \sin \theta \cos \theta} \cos \theta + \paren {\cos^2 \theta - \sin^2 \theta} \sin \theta\) | Double Angle Formula for Sine and Double Angle Formula for Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds 2 \sin \theta \cos^2 \theta + \cos^2 \theta \sin \theta - \sin^3 \theta\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 2 \sin \theta \paren {1 - \sin^2 \theta} + \paren {1 - \sin^2 \theta} \sin \theta - \sin^3 \theta\) | Sum of Squares of Sine and Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds 2 \sin \theta - 2 \sin^3 \theta + \sin \theta - \sin^3 \theta - \sin^3 \theta\) | multiplying out | |||||||||||
\(\ds \) | \(=\) | \(\ds 3 \sin \theta - 4 \sin^3 \theta\) | gathering terms |
$\blacksquare$
Proof 2
We have:
\(\ds \cos 3 \theta + i \sin 3 \theta\) | \(=\) | \(\ds \paren {\cos \theta + i \sin \theta}^3\) | De Moivre's Formula | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\cos \theta}^3 + \binom 3 1 \paren {\cos \theta}^2 \paren {i \sin \theta}\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \binom 3 2 \paren {\cos \theta} \paren {i \sin \theta}^2 + \paren {i \sin \theta}^3\) | Binomial Theorem | ||||||||||
\(\ds \) | \(=\) | \(\ds \cos^3 \theta + 3 i \cos^2 \theta \sin \theta + 3 i^2 \cos \theta \sin^2 \theta + i^3 \sin^3 \theta\) | substituting for binomial coefficients | |||||||||||
\(\ds \) | \(=\) | \(\ds \cos^3 \theta + 3 i \cos^2 \theta \sin \theta - 3 \cos \theta \sin^2 \theta - i \sin^3 \theta\) | $i^2 = -1$ | |||||||||||
\(\text {(1)}: \quad\) | \(\ds \) | \(=\) | \(\ds \cos^3 \theta - 3 \cos \theta \sin^2 \theta\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds i \paren {3 \cos^2 \theta \sin \theta - \sin^3 \theta}\) | rearranging |
Hence:
\(\ds \sin 3 \theta\) | \(=\) | \(\ds 3 \cos^2 \theta \sin \theta - \sin^3 \theta\) | equating imaginary parts in $(1)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds 3 \paren {1 - \sin^2 \theta} \sin \theta - \sin^3 \theta\) | Sum of Squares of Sine and Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds 3 \sin \theta - 4 \sin^3 \theta\) | multiplying out and gathering terms |
$\blacksquare$
Historical Note
The Triple Angle Formula for Sine is often attributed to François Viète, although it was in fact discovered by Jamshīd al-Kāshī a century or more earlier.
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 5$: Trigonometric Functions: $5.44$
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $1$: Complex Numbers: Supplementary Problems: De Moivre's Theorem: $90 \ \text{(a)}$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): multiple-angle formulae
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): multiple-angle formulae