User:Prime.mover/Constructs

From ProofWiki
Jump to navigation Jump to search

Useful Links to pages that use the Transclusion Extension

... and some proof structures


Useful constructs

Useful constructs for anyone to cut and paste:

{{TableauLine
| n    = 
| pool = 
| f    = 
| rlnk = 
| rtxt = 
| dep  = 
| c    = 
}}

{{EndSequence}}

No further terms of this sequence are documented on $\mathsf{Pr} \infty \mathsf{fWiki}$.

Structure of simple conditional within template:

{{#if: {{{param|}}} |{{{param}}}|}}

Blackboard characters: $\N \Z \Q \R \C \P \S$

$fred := bert$

The sequence of ... begins:

multiplying top and bottom by

subsuming $...$ into arbitrary constant


For how to use substack:

$\displaystyle \sum_{\map \Phi j} a_j = \paren {\lim_{n \mathop \to \infty} \sum_{\substack {\map \Phi j \\ -n \mathop \le j \mathop < 0} } a_j} + \paren {\lim_{n \mathop \to \infty} \sum_{\substack {\map \Phi j \\ 0 \mathop \le j \mathop \le n} } a_j}$


Let $P = \sequence {a_j}_{0 \mathop \le j \mathop \le n}$ be a geometric progression of integers.


Let $M_1 = \struct {A_1, d_1}, M_2 = \struct {A_2, d_2}, \ldots, M_n = \struct {A_n, d_n}$ be metric spaces.

Let $\displaystyle \mathcal A = \prod_{i \mathop = 1}^n A_i$ be the cartesian product of $A_1, A_2, \ldots, A_n$.

Let $d_\infty: \mathcal A \times \mathcal A \to \R$ be the Chebyshev distance on $\mathcal A$:

$\displaystyle \map {d_\infty} {x, y} = \max_{i \mathop = 1}^n \set {\map {d_i} {x_i, y_i} }$

where $x = \tuple {x_1, x_2, \ldots, x_n}, y = \tuple {y_1, y_2, \ldots, y_n} \in \mathcal A$.


Let $A$ be an algebra over the field $\R$ whose bilinear map $m: A^2 \to A$ is called multiplication.

Let the unity of $A$ be $1$ such that $\forall a \in A: \map m {1, a} = a = \map m {a, 1}$.

We can abbreviate $\map m {a, b}$ as $a b$.


Let $\struct {F, +, \circ}$ be a field whose zero is $0_F$ and whose unity is $1_F$.

Let $X$ be transcendental over $F$.

Let $F \sqbrk X$ be the ring of polynomials in $X$ over $F$.


Let $\struct {R, +, \circ}$ be a commutative ring with unity whose zero is $0_R$ and whose unity is $1_R$.

Let $\struct {D, +, \circ}$ be an integral subdomain of $R$.

For arbitrary $x \in R$, let $D \sqbrk x$ be the ring of polynomials in $x$ over $D$.


Let $\struct {R, +, \circ}$ be a ring.

Let $\struct {S, +, \circ}$ be a subring of $R$.

For arbitrary $x \in R$, let $S \sqbrk x$ be the set of polynomials in $x$ over $S$.


Let $\struct {\Omega, \Sigma, \Pr}$ be a probability space.

Let $X$ be a discrete random variable on $\struct {\Omega, \Sigma, \Pr}$.

Let $\floor x$ denote the floor of $x$.

Let $\ceiling x$ denote the ceiling of $x$.

Let $T = \struct {S, \tau}$ be a topological space.

Let $M = \struct {A, d}$ be a metric space.

Let $a \in A$.

Let $\map {B_\epsilon} {a; d}$ be an open $\epsilon$-ball of $a$ in $M$.


Let $\xi \in \R$ be a real number.

Let $\displaystyle \sum_{n \mathop = 0}^\infty a_n \paren {x - \xi}^n$ be a power series about $\xi$.


Let $f$ be a real function which is continuous on the closed interval $\closedint a b$ and differentiable on the open interval $\openint a b$.

Let $f$ have a primitive $F$ on $\closedint a b$.

Let $\displaystyle \sum_{n \mathop = 1}^\infty a_n$ be a convergent series in $\R$.

Let $\sequence {s_n}$ be the sequence of partial sums of $\displaystyle \sum_{n \mathop = 1}^\infty a_n$.

Let $\sequence {x_n}=$ be a sequence in $\R$.

Let $\sequence {x_n}=$ be a Cauchy sequence.

Let $\displaystyle \lim_{n \mathop \to \infty} x_n = l$.

Let $x_n \to l$ as $n \to \infty$.

Let $\sequence {x_{n_r} }$ be a subsequence of $sequence {x_n}$.


Let $\mathbf A = \left[{a}\right]_{m n}$ be an $m \times n$ matrix.

Let $\mathbf A = \left[{a}\right]_n$ be a square matrix of order $n$.

Let $\map \det {\mathbf A}$ be the determinant of $\mathbf A$.

Let $\map {\mathcal M_S} {m, n}$ be the $m \times n$ matrix space over $S$.

Let $\set {x, y, z}$ be a set.

Let $\powerset S$ be the power set of the set $S$.

Let $\struct {S, \circ}$ be an algebraic structure or a semigroup.

Let $\struct {G, \circ}$ be a group whose identity is $e$.

Let $\struct {S, \circ, *}$ be a Huntington algebra whose identity for $\circ$ is $e^\circ$ and whose identity for $*$ is $e^*$.

Let $\struct {R, +, \circ}$ be a ring whose zero is $0_R$.

Let $\struct {R, +, \circ}$ be a ring with unity whose zero is $0_R$ and whose unity is $1_R$.

Let $\struct {K, +, \circ}$ be a division ring whose zero is $0_K$ and whose unity is $1_K$.


Let $\gen S$ be the subgroup generated by $S$.

Let $\gen g = \struct {G, \circ}$ be a cyclic group.

Let $\struct {G, +_G, \circ}_R$ be an $R$-module.

Let $\struct {G, +_G, \circ}_K$ be a $K$-vector space.

Let $\struct {G, +_G, \circ}_R$ be a unitary $R$-module whose dimension is finite.


Let $\mathcal L_R \left({G, H}\right)$ be the set of all linear transformations from $G$ to $H$.

Let $\mathcal L_R \left({G}\right)$ be the set of all linear operators on $G$.

Let $\left[{u; \left \langle {b_m} \right \rangle, \left \langle {a_n} \right \rangle}\right]$ be the matrix of $u$ relative to $\left \langle {a_n} \right \rangle$ and $\left \langle {b_m} \right \rangle$.


Let $D \sqbrk X$ be the ring of polynomial forms in $X$ over $D$.

Let $\map P D$ be the ring of polynomial functions over $D$.

Let $G^*$ be the algebraic dual of $G$.

Let $G^{**}$ be the algebraic dual of $G^*$.

Let $M^\circ$ be the annihilator of $M$.

Let $\gen {x, t'}$ be as defined in Definition:Evaluation Linear Transformation.


Let $J$ be an ideal of $R$.

Let $\struct {R / J, +, \circ}$ be the quotient ring defined by $J$.


Let $\struct {D, +, \circ}$ be an integral domain or a principal ideal domain whose zero is $0_D$ and whose unity is $1_D$.

Let $\struct {F, +, \circ}$ be a field whose zero is $0_F$ and whose unity is $1_F$.

Let $\struct {K, +, \circ}$ be a quotient field of an integral domain $\left({D, +, \circ}\right)$.

Let $\struct {D, +, \circ, \le}$ be a totally ordered integral domain whose zero is $0_D$ and whose unity is $1_D$.


Let $\struct {S, \preceq}$ be a totally ordered set.

Let $\struct {S, \circ, \preceq}$ be an ordered structure.

Let $\struct {S, \circ, \preceq}$ be a naturally ordered semigroup.


$\closedint m n$ is the closed interval between $m$ and $n$.


$\N$, $\N_{> 0}$, $\N_k$, $\N^*_k$

$\Z$, $\Z_{\ne 0}$, $\Z_{\ge 0}$, $\Z_{> 0}$,


Let $\Z_m$ be the set of integers modulo $m$.

Let $\Z'_m$ be the reduced residue system modulo $m$.

Let $\struct {\Z, +}$ be the additive group of integers.

Let $\struct {\Z, +, \times}$ be the integral domain of integers.

Let $\struct {\Z_m, +_m, \times_m}$‎ be the ring of integers modulo $m$.

Let $\struct {\Z_m, +_m}$ be the additive group of integers modulo $m$.

Let $n \Z$ be the set of integer multiples of $n$.

Let $\ideal x$ be the principal ideal of $\struct {\Z, +, \times}$ generated by $x$.

Let $\operatorname{Char} \left({R}\right)$ be the characteristic of $R$.


The cardinality of a set $S$ is written $\card S$.


Let $\sequence {s_k}_{k \mathop \in A}$ be a sequence in $S$.


Let $\gcd \set {a, b}$ be the greatest common divisor of $a$ and $b$.

Let $\lcm \set {a, b}$ be the lowest common multiple of $a$ and $b$.

Let $\size a$ be the absolute value of $a$.

$a \equiv b \pmod m$ "$a$ is congruent to $b$ modulo $m$."

$\eqclass a m$ is the residue class of $a$ (modulo $m$).


Let $\index G H$ be the index of $H$ in $G$.

Let $C_G \paren H$ be the centralizer of $H$ in $G$.

Let $N_G \paren S$ be the normalizer of $S$ in $G$.

Let $G / N$ be the quotient group of $G$ by $N$.


Let $Z \paren G$ be the center of $G$.

Let $x \in G$.

Let $N_G \paren x$ be the normalizer of $x$ in $G$.

Let $\index G {N_G \paren x}$ be the index of $N_G \paren x$ in $G$.

Let $S_n$ denote the set of permutations on $n$ letters.

Let $S_n$ denote the symmetric group on $n$ letters.

Let $\Fix \pi$ denote the set of elements fixed by $\pi$.

Matrix (square brackets): $\begin{bmatrix} x & y \\ z & v \end{bmatrix}$

Matrix (round brackets): $\begin{pmatrix} x & y \\ z & v \end{pmatrix}$

two-row notation: $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{bmatrix}$

cycle notation: $\begin{bmatrix} x & y \end{bmatrix}$

Let $\Orb x$ be the orbit of $x$.

Let $\Stab x$ be the stabilizer of $x$ by $G$.


Let $\struct {S, \ast_1, \ast_2, \ldots, \ast_n, \circ}_R$ be an $R$-algebraic structure.


URM Programs

Line Command Comment
$1$ $Z \left({n}\right)$
$2$ $S \left({n}\right)$
$3$ $C \left({m, n}\right)$
$4$ $J \left({m, n, q}\right)$

...etc.

input

output

register

terminate

basic instruction

instruction pointer

null URM program

exit jump

exit line

stage of computation

state

Let $P$ be a URM program.

Let $P$ be a normalized URM program.

Let $l = \lambda \left({P}\right)$ be the number of basic instructions in $P$.

Let $u = \rho \left({Q}\right)$ be the number of registers used by $Q$.

Trace Table:

Stage Instruction $R_1$ $R_2$ $R_3$
$0$ $1$ $r_1$ $r_2$ $r_3$
$1$ $2$ $r_1$ $r_2$ $r_3$

...etc.