Value of Vandermonde Determinant/Formulation 1/Proof 3
Jump to navigation
Jump to search
Theorem
Let $V_n$ be the Vandermonde determinant of order $n$ defined as the following formulation:
- $V_n = \begin {vmatrix} 1 & x_1 & {x_1}^2 & \cdots & {x_1}^{n - 2} & {x_1}^{n - 1} \\ 1 & x_2 & {x_2}^2 & \cdots & {x_2}^{n - 2} & {x_2}^{n - 1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_n & {x_n}^2 & \cdots & {x_n}^{n - 2} & {x_n}^{n - 1} \end {vmatrix}$
Its value is given by:
- $\ds V_n = \prod_{1 \mathop \le i \mathop < j \mathop \le n} \paren {x_j - x_i}$
Proof
Let:
- $V_n = \begin {vmatrix} 1 & x_1 & {x_1}^2 & \cdots & {x_1}^{n - 2} & {x_1}^{n - 1} \\ 1 & x_2 & {x_2}^2 & \cdots & {x_2}^{n - 2} & {x_2}^{n - 1} \\ 1 & x_3 & {x_3}^2 & \cdots & {x_3}^{n - 2} & {x_3}^{n - 1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_{n - 1} & {x_{n - 1} }^2 & \cdots & {x_{n - 1} }^{n - 2} & {x_{n - 1} }^{n - 1} \\ 1 & x_n & {x_n}^2 & \cdots & {x_n}^{n - 2} & {x_n}^{n - 1} \end {vmatrix}$
Start by replacing number $x_n$ in $V_n$ with the unknown $x$.
Thus $V_n$ is made into a function of $x$:
- $\map P x = \begin{vmatrix} 1 & x_1 & {x_1}^2 & \cdots & {x_1}^{n - 2} & {x_1}^{n - 1} \\ 1 & x_2 & {x_2}^2 & \cdots & {x_2}^{n - 2} & {x_2}^{n - 1} \\ 1 & x_3 & {x_3}^2 & \cdots & {x_3}^{n - 2} & {x_3}^{n - 1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_{n - 1} & {x_{n - 1} }^2 & \cdots & {x_{n - 1} }^{n - 2} & {x_{n - 1} }^{n - 1} \\ 1 & x & x^2 & \cdots & x^{n - 2} & x^{n - 1} \end{vmatrix}$
Let $x$ equal a value from the set $\set {x_1, \ldots, x_{n-1} }$.
Then determinant $\map P x$ has equal rows, giving:
\(\ds \map P x\) | \(=\) | \(\ds 0\) | for $x = x_1, \ldots, x_{n - 1}$ |
Perform row expansion by the last row.
Then $\map P x$ is seen to be a polynomial of degree $n-1$:
- $\map P x = \begin {vmatrix} x_1 & {x_1}^2 & \cdots & {x_1}^{n - 2} & {x_1}^{n - 1} \\ x_2 & {x_2}^2 & \cdots & {x_2}^{n - 2} & {x_2}^{n - 1} \\ x_3 & {x_3}^2 & \cdots & {x_3}^{n - 2} & {x_3}^{n - 1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{n - 1} & {x_{n - 1} }^2 & \cdots & {x_{n - 1} }^{n - 2} & {x_{n - 1} }^{n - 1} \end{vmatrix} + \begin{vmatrix} 1 & {x_1}^2 & \cdots & {x_1}^{n - 2} & {x_1}^{n - 1} \\ 1 & {x_2}^2 & \cdots & {x_2}^{n - 2} & {x_2}^{n - 1} \\ 1 & {x_3}^2 & \cdots & {x_3}^{n - 2} & {x_3}^{n - 1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & {x_{n - 1} }^2 & \cdots & {x_{n - 1} }^{n - 2} & {x_{n - 1} }^{n - 1} \end {vmatrix} x + \cdots + \begin {vmatrix} 1 & x_1 & {x_1}^2 & \cdots & {x_1}^{n - 2} \\ 1 & x_2 & {x_2}^2 & \cdots & {x_2}^{n - 2} \\ 1 & x_3 & {x_3}^2 & \cdots & {x_3}^{n - 2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n - 1} & {x_{n - 1} }^2 & \cdots & {x_{n - 1} }^{n - 2} \end{vmatrix} x^{n - 1}$
By the Polynomial Factor Theorem:
- $\map P x = \map C {x - x_1} \paren {x - x_2} \dotsm \paren {x - x_{n - 1} }$
where $C$ is the leading coefficient (with $x^{n - 1}$ power).
Thus:
- $\map P x = V_{n - 1} \paren {x - x_1} \paren {x - x_2} \dotsm \paren {x - x_{n - 1} }$
which by evaluating at $x = x_n$ gives:
- $V_n = V_{n - 1} \paren {x_n - x_1} \paren {x_n - x_2} \dotsm \paren {x_n - x_{n - 1} }$
Repeating the process:
\(\ds V_n\) | \(=\) | \(\ds \prod_{1 \mathop \le i \mathop < n} \paren {x_n - x_i} V_{n - 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \prod_{1 \mathop \le i \mathop < n} \paren {x_n - x_i} \prod_{1 \mathop \le i \mathop < n - 1} \paren {x_{n - 1} - x_i} V_{n - 2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dotsm\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \prod_{1 \mathop \le i \mathop < j \mathop \le n} \paren {x_j - x_i}\) |
which establishes the solution.
$\blacksquare$