Argument of Complex Conjugate equals Negative of Argument

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z \in \C$ be a complex number.


Then:

$\arg {\overline z} = -\arg z$

where:

$\arg$ denotes the argument of a complex number
$\overline z$ denotes the complex conjugate of $z$.


Proof

Let $z$ be expressed in polar form:

$z := r \paren {\cos \theta + i \sin \theta}$


Then:

\(\ds \overline z\) \(=\) \(\ds r \paren {\cos \theta - i \sin \theta}\) Polar Form of Complex Conjugate
\(\ds \) \(=\) \(\ds r \paren {\map \cos {-\theta} + i \map \sin {-\theta} }\) Cosine Function is Even, Sine Function is Odd

The result follows by definition of the argument of a complex number

$\blacksquare$


Also see


Sources