Argument of Complex Conjugate equals Negative of Argument
Jump to navigation
Jump to search
Theorem
Let $z \in \C$ be a complex number.
Then:
- $\arg {\overline z} = -\arg z$
where:
- $\arg$ denotes the argument of a complex number
- $\overline z$ denotes the complex conjugate of $z$.
Proof
Let $z$ be expressed in polar form:
- $z := r \paren {\cos \theta + i \sin \theta}$
Then:
\(\ds \overline z\) | \(=\) | \(\ds r \paren {\cos \theta - i \sin \theta}\) | Polar Form of Complex Conjugate | |||||||||||
\(\ds \) | \(=\) | \(\ds r \paren {\map \cos {-\theta} + i \map \sin {-\theta} }\) | Cosine Function is Even, Sine Function is Odd |
The result follows by definition of the argument of a complex number
$\blacksquare$
Also see
Sources
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 2$. Geometrical Representations
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of Mathematical Functions ... (previous) ... (next): $3$: Elementary Analytic Methods: $3.7$ Complex Numbers and Functions: Complex Conjugate of $z$: $3.7.9$