Riemann Zeta Function of 4
Theorem
The Riemann zeta function of $4$ is given by:
\(\ds \map \zeta 4\) | \(=\) | \(\ds \dfrac 1 {1^4} + \dfrac 1 {2^4} + \dfrac 1 {3^4} + \dfrac 1 {4^4} + \cdots\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\pi^4} {90}\) | ||||||||||||
\(\ds \) | \(\approx\) | \(\ds 1 \cdotp 08232 \, 3 \ldots\) |
This sequence is A013662 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).
Proof 1
By Fourier Series of Fourth Power of x, for $x \in \closedint {-\pi} \pi$:
- $\ds x^4 = \frac {\pi^4} 5 + \sum_{n \mathop = 1}^\infty \frac {8 n^2 \pi^2 - 48} {n^4} \map \cos {n \pi} \map \cos {n x}$
Setting $x = \pi$:
\(\ds \pi^4\) | \(=\) | \(\ds \frac {\pi^4} 5 + \sum_{n \mathop = 1}^\infty \frac {8 n^2 \pi^2 - 48} {n^4} \map {\cos^2} {n \pi}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {4 \pi^4} 5\) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \frac {8 n^2 \pi^2} {n^4} - \sum_{n \mathop = 1}^\infty \frac {48} {n^4}\) | Cosine of Multiple of Pi | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\pi^4} 5\) | \(=\) | \(\ds 2 \pi^2 \sum_{n \mathop = 1}^\infty \frac 1 {n^2} - 12 \sum_{n \mathop = 1}^\infty \frac 1 {n^4}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\pi^4} 3 - 12 \sum_{n \mathop = 1}^\infty \frac 1 {n^4}\) | Basel Problem | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds 12 \sum_{n \mathop = 1}^\infty \frac 1 {n^4}\) | \(=\) | \(\ds \frac {\pi^4} 3 - \frac {\pi^4} 5\) | rearranging | ||||||||||
\(\ds \) | \(=\) | \(\ds \frac {2 \pi^4} {15}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \sum_{n \mathop = 1}^\infty \frac 1 {n^4}\) | \(=\) | \(\ds \frac {\pi^4} {90}\) |
$\blacksquare$
Proof 2
By Fourier Series of x squared, for $x \in \closedint {-\pi} \pi$:
- $\ds x^2 = \frac {\pi^2} 3 + \sum_{n \mathop = 1}^\infty \paren {\paren {-1}^n \frac 4 {n^2} \cos n x}$
Hence:
\(\ds \frac 1 \pi \int_{-\pi}^\pi x^4 \rd x\) | \(=\) | \(\ds \frac 1 2 \paren {\frac {2 \pi^2} 3}^2 + \sum_{n \mathop = 1}^\infty \paren {\frac {4 \paren {-1}^n} {n^2} }^2\) | Parseval's Theorem | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac 2 \pi \int_0^\pi x^4 \rd x\) | \(=\) | \(\ds \frac {2 \pi^4} 9 + \sum_{n \mathop = 1}^\infty \frac {16} {n^4}\) | Definite Integral of Even Function | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {2 \pi^4} 5\) | \(=\) | \(\ds \frac {2 \pi^4} 9 + \sum_{n \mathop = 1}^\infty \frac {16} {n^4}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {8 \pi^4} {45}\) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \frac {16} {n^4}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \sum_{n \mathop = 1}^\infty \frac 1 {n^4}\) | \(=\) | \(\ds \frac {\pi^4} {90}\) |
$\blacksquare$
Proof 3
![]() | This theorem requires a proof. In particular: $\ds \int_0^1\int_0^1\int_0^1\int_0^1 \frac 1 {1 - x_1x_2x_3x_4} \rd x_1 \rd x_2 \rd x_3 \rd x_4$. Use Beukers-Calabi-Kolk sub. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Proof 4
\(\ds \map \zeta 4\) | \(=\) | \(\ds \paren {-1}^3 \dfrac {B_4 2^3 \pi^4} {4!}\) | Riemann Zeta Function at Even Integers | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {-1}^3 \paren {-\dfrac 1 {30} } \dfrac {2^3 \pi^4} {4!}\) | Definition of Sequence of Bernoulli Numbers | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\dfrac 1 {30} } \paren {\dfrac 8 {24} } \pi^4\) | Definition of Factorial | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\pi^4} {90}\) | simplifying |
$\blacksquare$
Proof 5
Create a multiplication table where the column down the left hand side and the row across the top each contains the terms of zeta function of $2$:
- $\begin {array} {c|cccccccccc} \paren {\map \zeta 2}^2 & \paren {\dfrac 1 {1^2} } & \paren {\dfrac 1 {2^2} } & \paren {\dfrac 1 {3^2} } & \paren {\dfrac 1 {4^2} } & \cdots \\ \hline \paren {\dfrac 1 {1^2} } & \paren {\dfrac 1 {1^4} } & \paren {\dfrac 1 {1^2} } \paren {\dfrac 1 {2^2} } & \paren {\dfrac 1 {1^2} } \paren {\dfrac 1 {3^2} } & \paren {\dfrac 1 {1^2} } \paren {\dfrac 1 {4^2} } & \cdots \\ \paren {\dfrac 1 {2^2} } & \paren {\dfrac 1 {2^2} } \paren {\dfrac 1 {1^2} } & \paren {\dfrac 1 {2^4} } & \paren {\dfrac 1 {2^2} } \paren {\dfrac 1 {3^2} } & \paren {\dfrac 1 {2^2} } \paren {\dfrac 1 {4^2} } & \cdots \\ \paren {\dfrac 1 {3^2} } & \paren {\dfrac 1 {3^2} } \paren {\dfrac 1 {1^2} } & \paren {\dfrac 1 {3^2} } \paren {\dfrac 1 {2^2} } & \paren {\dfrac 1 {3^4} } & \paren {\dfrac 1 {3^2} } \paren {\dfrac 1 {4^2} } & \cdots \\ \paren {\dfrac 1 {4^2} } & \paren {\dfrac 1 {4^2} } \paren {\dfrac 1 {1^2} } & \paren {\dfrac 1 {4^2} } \paren {\dfrac 1 {2^2} } & \paren {\dfrac 1 {4^2} } \paren {\dfrac 1 {3^2} } & \paren {\dfrac 1 {4^4} } & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\ \end {array}$
The sum of all of the entries in this table is equal to $\paren {\map \zeta 2}^2$.
- $\map \zeta 4$ is the sum of the entries along the main diagonal.
We have:
\(\ds \paren {\map \zeta 2}^2\) | \(=\) | \(\ds \paren {\sum_{i \mathop = 1}^\infty {\frac 1 {i^2} } } \paren {\sum_{j \mathop = 1}^\infty {\frac 1 {j^2} } }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{i \mathop = 1}^\infty \sum_{j \mathop = 1}^\infty {\frac 1 {i^2} } {\frac 1 {j^2} }\) | Product of Absolutely Convergent Series | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{i \mathop = 1}^{\infty} {\frac 1 {i^4} } + \sum_{i \mathop = 1}^\infty \sum_{j \mathop = {i + 1} }^\infty {\frac 1 {i^2} } {\frac 1 {j^2} } + \sum_{j \mathop = 1}^\infty \sum_{i \mathop = {j + 1} }^\infty {\frac 1 {i^2} } {\frac 1 {j^2} }\) | $\paren {i = j} + \paren {j > i} + \paren {j < i}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \zeta 4 + 2 \sum_{i \mathop = 1}^\infty \sum_{j \mathop = {i + 1} }^\infty {\frac 1 {i^2} } {\frac 1 {j^2} }\) |
Let:
\(\ds P_k\) | \(=\) | \(\ds x \prod_{n \mathop = 1}^k \paren {1 - \frac {x^2} {n^2 \pi^2} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds x \paren {1 - \dfrac {x^2} {1 \pi^2} } \paren {1 - \dfrac {x^2} {2^2 \pi^2} } \paren {1 - \dfrac {x^2} {3^2 \pi^2} } \cdots \paren {1 - \dfrac {x^2} {k^2 \pi^2} }\) |
Therefore:
\(\ds P_1\) | \(=\) | \(\ds x - \frac {x^3} {\pi^2} \paren {\dfrac 1 {1^2} }\) | ||||||||||||
\(\ds P_2\) | \(=\) | \(\ds x - \frac {x^3} {\pi^2} \paren {\dfrac 1 {1^2} + \dfrac 1 {2^2} } + \frac {x^5} {\pi^4} \paren {\dfrac 1 {1^2} \dfrac 1 {2^2} }\) | ||||||||||||
\(\ds P_3\) | \(=\) | \(\ds x - \frac {x^3} {\pi^2} \paren {\dfrac 1 {1^2} + \dfrac 1 {2^2} + \dfrac 1 {3^2} } + \frac {x^5} {\pi^4} \paren {\dfrac 1 {1^2} \dfrac 1 {2^2} + \dfrac 1 {1^2} \dfrac 1 {3^2} + \dfrac 1 {2^2} \dfrac 1 {3^2} } - \frac {x^7} {\pi^6} \paren {\dfrac 1 {1^2} \dfrac 1 {2^2} \dfrac 1 {3^2} }\) | ||||||||||||
\(\ds P_4\) | \(=\) | \(\ds x - \frac {x^3} {\pi^2} \paren {\dfrac 1 {1^2} + \dfrac 1 {2^2} + \dfrac 1 {3^2} + \dfrac 1 {4^2} } + \frac {x^5} {\pi^4} \paren {\dfrac 1 {1^2} \dfrac 1 {2^2} + \dfrac 1 {1^2} \dfrac 1 {3^2} + \dfrac 1 {1^2} \dfrac 1 {4^2} + \dfrac 1 {2^2} \dfrac 1 {3^2} + \dfrac 1 {2^2} \dfrac 1 {4^2} + \dfrac 1 {3^2} \dfrac 1 {4^2} } - \frac {x^7} {\pi^6} \paren {\dfrac 1 {1^2} \dfrac 1 {2^2} \dfrac 1 {3^2} + \dfrac 1 {1^2} \dfrac 1 {2^2} \dfrac 1 {4^2} + \dfrac 1 {1^2} \dfrac 1 {3^2} \dfrac 1 {4^2} + \dfrac 1 {2^2} \dfrac 1 {3^2} \dfrac 1 {4^2} } + \frac {x^9} {\pi^8} \paren {\dfrac 1 {1^2} \dfrac 1 {2^2} \dfrac 1 {3^2} \dfrac 1 {4^2} }\) |
We make the following observations:
- $(1): \quad$ The number of terms added to calculate the coefficient of the $x^3$ term is $\dbinom k 1 = k$
- $(2): \quad$ The number of terms added to calculate the coefficient of the $x^5$ term is $\dbinom k 2$
- $(3): \quad$ For $k \ge 1$, the coefficient of $x^3$ in $\ds P_k = - \dfrac 1 {\pi^2} \sum_{i \mathop = 1}^k \dfrac 1 {i^2}$
- $(4): \quad$ For $k \ge 2$, the coefficient of $x^5$ in $\ds P_k = \dfrac 1 {\pi^4} \sum_{i \mathop = 1}^{k - 1} \sum_{j \mathop = {i + 1} }^k \paren {\frac 1 {i^2} } \paren {\frac 1 {j^2} } $
Expanding the product out to k, we get:
\(\ds P_k\) | \(=\) | \(\ds x - \dfrac {x^3} {\pi^2} \sum_{i \mathop = 1}^k \dfrac 1 {i^2} + \frac {x^5} {\pi^4} \sum_{i \mathop = 1}^{k - 1} \sum_{j \mathop = {i + 1} }^k \paren {\frac 1 {i^2} } \paren {\frac 1 {j^2} } - \cdots\) |
Now recall the following two representations of the Sine of x:
\(\ds \sin x\) | \(=\) | \(\ds x \prod_{n \mathop = 1}^\infty \paren {1 - \dfrac {x^2} {n^2 \pi^2} }\) | Euler Formula for Sine Function |
\(\ds \sin x\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \paren {-1}^n \dfrac {x^{2 n + 1} } {\paren {2 n + 1}!} = x - \dfrac {x^3} {3!} + \dfrac {x^5} {5!} - \dfrac {x^7} {7!} + \cdots\) | Power Series Expansion for Sine Function |
Notice that by taking the limit of $P_k$ as $k \to \infty$, we obtain precisely the Euler Formula for Sine Function.
Equating the coefficient of $x^5$ in the Euler Formula for Sine Function with the Power Series Expansion for Sine Function, we have:
- $\ds \lim_{k \mathop \to \infty} \dfrac 1 {\pi^4} \sum_{i \mathop = 1}^{k - 1} \sum_{j \mathop = {i + 1} }^k \paren {\frac 1 {i^2} } \paren {\frac 1 {j^2} } = \frac 1 {5!}$
Therefore:
- $\ds \sum_{i \mathop = 1}^\infty \sum_{j \mathop = {i + 1} }^\infty \paren {\frac 1 {i^2} } \paren {\frac 1 {j^2} } = \frac {\pi^4} {5!}$
Therefore:
\(\ds \paren {\map \zeta 2}^2\) | \(=\) | \(\ds \map \zeta 4 + 2 \sum_{i \mathop = 1}^\infty \sum_{j \mathop = {i + 1} }^\infty {\frac 1 {i^2} } {\frac 1 {j^2} }\) | ||||||||||||
\(\ds \paren {\map \zeta 2}^2\) | \(=\) | \(\ds \map \zeta 4 + 2 \dfrac {\pi^4} {5!}\) | ||||||||||||
\(\ds \map \zeta 4\) | \(=\) | \(\ds \paren {\map \zeta 2}^2 - 2 \dfrac {\pi^4} {5!}\) | Rearranging | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren{\dfrac {\pi^2} 6 }^2 - \dfrac {\pi^4} {60}\) | Basel Problem | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\pi^4} {36} - \dfrac {\pi^4} {60}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {5\pi^4} {180} - \dfrac {3\pi^4} {180}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {2\pi^4} {180}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\pi^4} {90}\) |
$\blacksquare$
The decimal expansion can be found by an application of arithmetic.
Historical Note
The Riemann Zeta Function of 4 was solved by Leonhard Euler, using the same technique as for the Basel Problem.
- If only my brother were alive now.
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 19$: Series involving Reciprocals of Powers of Positive Integers: $19.20$
- 1983: François Le Lionnais and Jean Brette: Les Nombres Remarquables ... (previous) ... (next): $1,08232 3237 \ldots$
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $1 \cdotp 082 \, 323 \ldots$
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): zeta function
- 1992: George F. Simmons: Calculus Gems ... (previous) ... (next): Chapter $\text {A}.21$: Euler ($\text {1707}$ – $\text {1783}$)
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.7$: Harmonic Numbers: $(7)$
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $1 \cdotp 08232 \, 3 \ldots$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Riemann zeta function
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Riemann zeta function
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): zeta function