Complex Modulus of Sum of Complex Numbers

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z_1, z_2 \in \C$ be complex numbers.

Let $\theta_1$ and $\theta_2$ be arguments of $z_1$ and $z_2$, respectively.


Then:

$\cmod {z_1 + z_2}^2 = \cmod {z_1}^2 + \cmod {z_2}^2 + 2 \cmod {z_1} \cmod {z_2} \, \map \cos {\theta_1 - \theta_2}$


Proof 1

We have:

\(\ds \cmod {z_1 + z_2}^2\) \(=\) \(\ds \paren {z_1 + z_2} \paren {\overline {z_1} + \overline {z_2} }\) Modulus in Terms of Conjugate and Sum of Complex Conjugates
\(\ds \) \(=\) \(\ds z_1 \overline {z_1} + z_2 \overline {z_2} + z_1\overline {z_2} + \overline {z_1} z_2\)
\(\ds \) \(=\) \(\ds \cmod {z_1}^2 + \cmod {z_2}^2 + 2 \, \map \Re {z_1 \overline {z_2} }\) Modulus in Terms of Conjugate and Sum of Complex Number with Conjugate
\(\ds \) \(=\) \(\ds \cmod {z_1}^2 + \cmod {z_2}^2 + 2 \, \cmod{ z_1 } \cmod{ z_2 } \map \cos {\theta_1 - \theta_2}\) Product of Complex Numbers in Polar Form and Argument of Conjugate of Complex Number

$\blacksquare$


Proof 2

\(\ds \cmod {z_1 + z_2}^2\) \(=\) \(\ds \paren {\cmod {z_1} \cos \theta_1 + \cmod {z_2} \cos \theta_2}^2 + \paren {\cmod {z_1} \sin \theta_1 + \cmod {z_2} \sin \theta_2}^2\) Definition of Complex Modulus
\(\ds \) \(=\) \(\ds 2 \cmod {z_1} \cmod {z_2} \cos \theta_1 \cos \theta_2 + \cmod {z_1}^2 \cos^2 \theta_1 + \cmod {z_2}^2 \cos^2 \theta_2\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds 2 \cmod {z_1} \cmod {z_2} \sin \theta_1 \sin \theta_2 + \cmod {z_1}^2 \sin^2 \theta_1 + \cmod {z_2}^2 \sin^2 \theta_2\)
\(\ds \) \(=\) \(\ds 2 \cmod {z_1} \cmod {z_2} \paren {\cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2} + \cmod {z_1}^2 + \cmod {z_2}^2\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds \cmod {z_1}^2 + \cmod {z_2}^2 + 2 \cmod {z_1} \cmod {z_2} \, \map \cos {\theta_1 - \theta_2}\) Cosine of Difference

$\blacksquare$


Also see