Definition:Area Hyperbolic Function

From ProofWiki
Jump to navigation Jump to search

Definition

Complex Area Hyperbolic Function

Complex Area Hyperbolic Sine

The principal branch of the complex inverse hyperbolic sine function is defined as:

$\forall z \in \C: \map \Arsinh z := \map \Ln {z + \sqrt {z^2 + 1} }$

where:

$\Ln$ denotes the principal branch of the complex natural logarithm
$\sqrt {z^2 + 1}$ denotes the principal square root of $z^2 + 1$.


Complex Area Hyperbolic Cosine

The principal branch of the complex inverse hyperbolic cosine function is defined as:

$\forall z \in \C: \map \Arcosh z := \map \Ln {z + \sqrt {z^2 - 1} }$

where:

$\Ln$ denotes the principal branch of the complex natural logarithm
$\sqrt {z^2 - 1}$ denotes the principal square root of $z^2 - 1$.


Complex Area Hyperbolic Tangent

The principal branch of the complex inverse hyperbolic tangent function is defined as:

$\forall z \in \C: \map \Artanh z := \dfrac 1 2 \, \map \Ln {\dfrac {1 + z} {1 - z} }$

where $\Ln$ denotes the principal branch of the complex natural logarithm.


Complex Area Hyperbolic Cotangent

The principal branch of the complex inverse hyperbolic cotangent function is defined as:

$\forall z \in \C: \map \Arcoth z := \dfrac 1 2 \map \Ln {\dfrac {z + 1} {z - 1} }$

where $\Ln$ denotes the principal branch of the complex natural logarithm.


Complex Area Hyperbolic Secant

The principal branch of the complex inverse hyperbolic secant function is defined as:

$\forall z \in \C: \map \Arsech z := \map \Ln {\dfrac {1 + \sqrt {1 - z^2} } z}$

where:

$\Ln$ denotes the principal branch of the complex natural logarithm
$\sqrt {1 - z^2}$ denotes the principal square root of $1 - z^2$.


Complex Area Hyperbolic Cosecant

The principal branch of the complex inverse hyperbolic cosecant function is defined as:

$\forall z \in \C_{\ne 0}: \map \Arcsch z := \map \Ln {\dfrac {1 + \sqrt {z^2 + 1} } z}$

where:

$\Ln$ denotes the principal branch of the complex natural logarithm
$\sqrt {z^2 + 1}$ denotes the principal square root of $z^2 + 1$.


Real Area Hyperbolic Function

Real Area Hyperbolic Sine

The inverse hyperbolic sine $\arsinh: \R \to \R$ is a real function defined on $\R$ as:

$\forall x \in \R: \map \arsinh x := \map \ln {x + \sqrt {x^2 + 1} }$

where:

$\ln$ denotes the natural logarithm of a (strictly positive) real number
$\sqrt {x^2 + 1}$ denotes the positive square root of $x^2 + 1$.


Real Area Hyperbolic Cosine

The principal branch of the real inverse hyperbolic cosine function is defined as:

$\forall x \in S: \map \arcosh x := \map \ln {x + \sqrt {x^2 - 1} }$

where:

$\ln$ denotes the natural logarithm of a (strictly positive) real number.
$\sqrt {x^2 - 1}$ specifically denotes the positive square root of $x^2 - 1$

That is, where $\map \arcosh x \ge 0$.


Real Area Hyperbolic Tangent

The inverse hyperbolic tangent $\artanh: S \to \R$ is a real function defined on $S$ as:

$\forall x \in S: \map \artanh x := \dfrac 1 2 \map \ln {\dfrac {1 + x} {1 - x} }$

where $\ln$ denotes the natural logarithm of a (strictly positive) real number.


Real Area Hyperbolic Cotangent

The inverse hyperbolic cotangent $\arcoth: S \to \R$ is a real function defined on $S$ as:

$\forall x \in S: \arcoth x := \dfrac 1 2 \map \ln {\dfrac {x + 1} {x - 1} }$

where $\ln$ denotes the natural logarithm of a (strictly positive) real number.


Real Area Hyperbolic Secant

The principal branch of the real inverse hyperbolic secant function is defined as:

$\forall x \in S: \map \arsech x := \map \ln {\dfrac {1 + \sqrt {1 - x^2} } x}$

where:

$\ln$ denotes the natural logarithm of a (strictly positive) real number.
$\sqrt {1 - x^2}$ specifically denotes the positive square root of $x^2 - 1$

That is, where $\map \arsech x \ge 0$.


Real Area Hyperbolic Cosecant

The inverse hyperbolic cosecant $\arcsch: \R_{\ne 0} \to \R$ is a real function defined on the non-zero real numbers $\R_{\ne 0}$ as:

$\forall x \in \R_{\ne 0}: \map \arcsch x := \map \ln {\dfrac 1 x + \dfrac {\sqrt {x^2 + 1} } {\size x} }$

where:

$\sqrt {x^2 + 1}$ denotes the positive square root of $x^2 + 1$
$\ln$ denotes the natural logarithm of a (strictly positive) real number.