Euler's Reflection Formula
Jump to navigation
Jump to search
Theorem
Let $\Gamma$ denote the gamma function.
Then:
- $\forall z \notin \Z: \map \Gamma z \map \Gamma {1 - z} = \dfrac \pi {\map \sin {\pi z} }$
Corollary
- $\forall z \notin \Z: \paren {-z}! \, \map \Gamma z = \dfrac \pi {\map \sin {\pi z} }$
Proof
We have the Weierstrass products:
- $\ds \map \sin {\pi z} = \pi z \prod_{n \mathop \ne 0} \paren {1 - \frac z n} \map \exp {\frac z n}$
From the Weierstrass form of the Gamma function:
- $\ds \frac 1 {\map \Gamma z} = z e^{\gamma z} \prod_{n \mathop = 1}^\infty \paren {1 + \frac z n} \map \exp {-\frac z n}$
from which:
\(\ds \dfrac 1 {-z \, \map \Gamma z \map \Gamma {-z} }\) | \(=\) | \(\ds \frac {-z^2 \map \exp {\gamma z} \map \exp {-\gamma z} } {-z} \prod_{n \mathop = 1}^\infty \paren {1 + \frac z n} \paren {1 - \frac z n} \map \exp {\frac z n} \map \exp {-\frac z n}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds z \prod_{n \mathop = 1}^\infty \paren {1 - \frac {z^2} {n^2} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\map \sin {\pi z} } \pi\) | Euler Formula for Sine Function |
whence:
\(\ds \map \Gamma z \map \Gamma {1 - z}\) | \(=\) | \(\ds -z \, \map \Gamma z \map \Gamma {-z}\) | Gamma Difference Equation | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac \pi {\map \sin {\pi z} }\) |
$\blacksquare$
Also see
Source of Name
This entry was named for Leonhard Paul Euler.
Sources
- 1965: Murray R. Spiegel: Theory and Problems of Laplace Transforms ... (previous) ... (next): Chapter $1$: The Laplace Transform: Some Special Functions: $\text {I}$. The Gamma function: $3$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $16.8$: Relationships among Gamma Functions
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.5$: Permutations and Factorials: Exercise $23$