Modulo Multiplication is Well-Defined/Proof 2

From ProofWiki
Jump to navigation Jump to search


The multiplication modulo $m$ operation on $\Z_m$, the set of integers modulo $m$, defined by the rule:

$\eqclass x m \times_m \eqclass y m = \eqclass {x y} m$

is a well-defined operation.

That is:

If $a \equiv b \pmod m$ and $x \equiv y \pmod m$, then $a x \equiv b y \pmod m$.


The equivalence class $\eqclass a m$ is defined as:

$\eqclass a m = \set {x \in \Z: x = a + k m: k \in \Z}$

that is, the set of all integers which differ from $a$ by an integer multiple of $m$.

Thus the notation for multiplication of two residue classes modulo $z$ is not usually $\eqclass a m \times_m \eqclass b m$.

What is more normally seen is:

$a b \pmod m$

Using this notation:

\(\ds a\) \(\equiv\) \(\ds b\) \(\ds \pmod m\)
\(\, \ds \land \, \) \(\ds c\) \(\equiv\) \(\ds d\) \(\ds \pmod m\)
\(\ds \leadsto \ \ \) \(\ds a \bmod m\) \(=\) \(\ds b \bmod m\) Definition of Congruence Modulo Integer
\(\, \ds \land \, \) \(\ds c \bmod m\) \(=\) \(\ds d \bmod m\)
\(\ds \leadsto \ \ \) \(\ds a\) \(=\) \(\ds b + k_1 m\) for some $k_1 \in \Z$
\(\, \ds \land \, \) \(\ds c\) \(=\) \(\ds d + k_2 m\) for some $k_2 \in \Z$
\(\ds \leadsto \ \ \) \(\ds a c\) \(=\) \(\ds \paren {b + k_1 m} \paren {d + k_2 m}\) Definition of Multiplication
\(\ds \) \(=\) \(\ds b d + b k_2 m + d k_1 m + k_1 k_2 m^2\) Integer Multiplication Distributes over Addition
\(\ds \) \(=\) \(\ds b d + \paren {b k_2 + d k_1 + k_1 k_2 m} m\)
\(\ds \leadsto \ \ \) \(\ds a c\) \(\equiv\) \(\ds b d\) \(\ds \pmod m\) Definition of Modulo Multiplication



This result does not hold when $a, b, x, y, m \notin \Z$.

Let $z \in \R$ be a real number.


$a \equiv b \pmod z$


$x \equiv y \pmod z$

where $a, b, x, y \in \R$.

Then it does not necessarily hold that:

$a x \equiv b y \pmod z$