Power Series Expansion for Secant Function
Jump to navigation
Jump to search
Theorem
The (real) secant function has a Taylor series expansion:
\(\ds \sec x\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {E_{2 n} x^{2 n} } {\paren {2 n}!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 + \frac {x^2} 2 + \frac {5 x^4} {24} + \frac {61 x^6} {720} + \dfrac {1385 x^8} {40320} + \cdots\) |
where $E_{2 n}$ denotes the Euler numbers.
This converges for $\size x < \dfrac \pi 2$.
Proof
\(\ds \sec x\) | \(=\) | \(\ds \map \sech {i x}\) | Secant in terms of Hyperbolic Secant | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {E_n \paren {i x}^n} {n!}\) | Definition of Euler Numbers | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {E_{2 n} \paren {i x}^{2 n} } {\paren {2 n}!}\) | Odd terms vanish | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {\paren {-1}^n E_{2 n} x^{2 n} } {\paren {2 n}!}\) |
$\blacksquare$
Also presented as
The Power Series Expansion for Secant Function can also be presented in the form:
\(\ds \sec x\) | \(=\) | \(\ds 1 + \sum_{n \mathop = 1}^\infty \frac { {E_n}^* x^{2 n} } {\paren {2 n}!}\) |
where ${E_n}^*$ denotes the alternative form of the Euler numbers.
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 20$: Series for Trigonometric Functions: $20.25$
- 1976: K. Weltner and W.J. Weber: Mathematics for Engineers and Scientists ... (previous) ... (next): $8$. Taylor Series and Power Series: Appendix: Table $8.2$: Power Series of Important Functions
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 22$: Taylor Series: Series for Trigonometric Functions: $22.25.$