Triangle Inequality/Complex Numbers/Proof 4
Jump to navigation
Jump to search
Theorem
Let $z_1, z_2 \in \C$ be complex numbers.
Let $\cmod z$ denote the modulus of $z$.
Then:
- $\cmod {z_1 + z_2} \le \cmod {z_1} + \cmod {z_2}$
Proof
\(\ds \cmod {z + w}^2\) | \(=\) | \(\ds \paren {z + w} \paren {\overline z + \overline w}\) | Product of Complex Number with Conjugate | |||||||||||
\(\ds \) | \(=\) | \(\ds z \overline z + w \overline w + w \overline z + z \overline w\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \cmod z^2 + \cmod w^2 + w \overline z + z \overline w\) | Product of Complex Number with Conjugate | |||||||||||
\(\ds \) | \(=\) | \(\ds \cmod z^2 + \cmod w^2 + w \overline z + \overline {\paren {\overline z} } \overline w\) | Complex Conjugation is Involution | |||||||||||
\(\ds \) | \(=\) | \(\ds \cmod z^2 + \cmod w^2 + \overline z w + \overline {\paren {\overline z w} }\) | Product of Complex Conjugates and Complex Multiplication is Commutative | |||||||||||
\(\ds \) | \(=\) | \(\ds \cmod z^2 + \cmod w^2 + 2 \map \Re {z \overline w}\) | Sum of Complex Number with Conjugate | |||||||||||
\(\ds \) | \(\le\) | \(\ds \cmod z^2 + \cmod w^2 + 2 \cmod {z \overline w}\) | Modulus Larger than Real Part | |||||||||||
\(\ds \) | \(=\) | \(\ds \cmod z^2 + \cmod w^2 + 2 \cmod z \cmod {\overline w}\) | Complex Modulus of Product of Complex Numbers | |||||||||||
\(\ds \) | \(=\) | \(\ds \cmod z^2 + \cmod w^2 + 2 \cmod z \cmod w\) | Complex Modulus equals Complex Modulus of Conjugate | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\cmod z + \cmod w}^2\) | Square of Sum | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \cmod {z + w}\) | \(\le\) | \(\ds \cmod z + \cmod w\) |
$\blacksquare$
Proof
- 1957: E.G. Phillips: Functions of a Complex Variable (8th ed.) ... (previous) ... (next): Chapter $\text I$: Functions of a Complex Variable: $\S 2$. Conjugate Complex Numbers: Theorem
- 1990: H.A. Priestley: Introduction to Complex Analysis (revised ed.) ... (previous) ... (next): $1$ The complex plane: Complex numbers $\S 1.4$ Inequalities: $(2)$