Uniformly Convergent Sequence Multiplied with Function
Jump to navigation
Jump to search
Theorem
Let $X$ be a set.
Let $V$ be a normed vector space over $\mathbb K$.
Let $\sequence {f_n}$ be a sequence of mappings $f_n: X \to V$.
Let $\sequence {f_n}$ be uniformly convergent.
Let $g: X \to \mathbb K$ be bounded.
Then $\sequence {f_n g}$ is uniformly convergent.
Corollary
Let $X$ be a compact topological space.
Let $g: X \to \mathbb K$ be continuous.
Then $\left\langle{f_n g}\right\rangle$ is uniformly convergent.
Proof
Denote $\norm {\, \cdot \,}$ as the norm on $V$.
Let $\epsilon > 0$.
By boundedness of $g$:
- $\exists M \in \R: \forall x \in X: \norm {\map g x} < M$
By uniformly convergence of $\sequence {f_n}$:
- $\exists f: X \to \mathbb K: \exists N \in \R: \forall x \in X: \norm {\map {f_n} x - \map f x} < \dfrac \epsilon M$
Pick any $x \in X$. Then:
\(\ds \norm {\map {f_n} x \map g x - \map f x \map g x}\) | \(=\) | \(\ds \norm {\map g x \paren {\map {f_n} x - \map f x} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \norm {\map g x} \norm {\map {f_n} x - \map f x}\) | Norm Axiom $\text N 2$: Multiplicativity | |||||||||||
\(\ds \) | \(<\) | \(\ds M \cdot \dfrac \epsilon M\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \epsilon\) |
As the choice of $x$ is arbitrary, $\sequence {f_n g}$ uniformly converges to $\sequence {f g}$.
$\blacksquare$