Werner Formulas/Hyperbolic Sine by Hyperbolic Sine
< Werner Formulas(Redirected from Werner Formula for Hyperbolic Sine by Hyperbolic Sine)
Jump to navigation
Jump to search
Theorem
- $\sinh x \sinh y = \dfrac {\map \cosh {x + y} - \map \cosh {x - y} } 2$
where $\sinh$ denotes hyperbolic sine and $\cosh$ denotes hyperbolic cosine.
Proof 1
\(\ds \) | \(\) | \(\ds \frac {\map \cosh {x + y} - \map \cosh {x - y} } 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\paren {\cosh x \cosh y + \sinh x \sinh y} - \map \cosh {x - y} } 2\) | Hyperbolic Cosine of Sum | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\paren {\cosh x \cosh y + \sinh x \sinh y} - \paren {\cosh x \cosh y - \sinh x \sinh y} } 2\) | Hyperbolic Cosine of Difference | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {2 \sinh x \sinh y} 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sinh x \sinh y\) |
$\blacksquare$
Proof 2
\(\ds \sinh x \sinh y\) | \(=\) | \(\ds \frac {e^x - e^{-x} } 2 \frac {e^y - e^{-y} } 2\) | Definition of Hyperbolic Sine | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{x + y} - e^{x - y} - e^{-x + y} + e^{-x - y} } 4\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \paren {\dfrac {e^{x + y} + e^{-\paren {x + y} } } 2 - \frac {e^{x - y} + e^{-\paren {x - y} } } 2}\) | rearranging | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\cosh \paren {x + y} - \cosh \paren {x - y} } 2\) | Definition of Hyperbolic Cosine |
$\blacksquare$
Proof 3
\(\ds \sinh x \sinh y\) | \(=\) | \(\ds i^2 \map \sin {\frac x i} \map \sin {\frac y i}\) | Sine in terms of Hyperbolic Sine | |||||||||||
\(\ds \) | \(=\) | \(\ds -\map \sin {\frac x i} \map \sin {\frac y i}\) | $i^2 = -1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac {\map \cos {\frac x i - \frac y i} - \map \cos {\frac x i + \frac y i} } 2\) | Werner Formula for Sine by Sine | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\map \cos {\frac x i + \frac y i} - \map \cos {\frac x i - \frac y i} } 2\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\map \cosh {x + y} - \map \cosh {x - y} } 2\) | Cosine in terms of Hyperbolic Cosine |
$\blacksquare$
Also presented as
This result can also be seen presented as:
- $2 \sinh x \sinh y = \map \cosh {x + y} - \map \cosh {x - y}$
Sources
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 4$. Elementary Functions of a Complex Variable: Exercise $8 \ \text{(iii)}$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 8$: Hyperbolic Functions: $8.46$: Sum, Difference and Product of Hyperbolic Functions