Definition:Congruence (Number Theory)/Integers/Integer Multiple
Jump to navigation
Jump to search
Definition
Let $m \in \Z_{> 0}$ be an integer.
Let $x, y \in \Z$.
$x$ is congruent to $y$ modulo $m$ if and only if their difference is an integer multiple of $m$:
- $x \equiv y \pmod m \iff \exists k \in \Z: x - y = k m$
Also denoted as
This is often expressed in terms of divisibility:
- $x \equiv y \pmod m \iff m \divides \paren {x - y}$
Notation
The relation $x$ is congruent to $y$ modulo $z$, usually denoted:
- $x \equiv y \pmod z$
is also frequently seen denoted as:
- $x \equiv y \ \paren {\mathop {\operatorname{modulo} } z}$
Some (usually older) sources render it as:
- $x \equiv y \ \paren {\mathop {\operatorname{mod.} } z}$
Also see
Historical Note
The concept of congruence modulo an integer was first explored by Carl Friedrich Gauss.
He originated the notation $a \equiv b \pmod m$ in his work Disquisitiones Arithmeticae, published in $1801$.
Linguistic Note
The word modulo comes from the Latin for with modulus, that is, with measure.
Sources
- 1959: E.M. Patterson: Topology (2nd ed.) ... (previous) ... (next): Chapter $\text {II}$: Topological Spaces: $\S 10$. Equivalence Relations
- 1964: Iain T. Adamson: Introduction to Field Theory ... (previous) ... (next): Chapter $\text {I}$: Elementary Definitions: $\S 1$. Rings and Fields: Example $4$
- 1964: Walter Ledermann: Introduction to the Theory of Finite Groups (5th ed.) ... (previous) ... (next): Chapter $\text {I}$: The Group Concept: $\S 6$: Examples of Finite Groups: $\text{(iii)}$
- 1965: J.A. Green: Sets and Groups ... (previous) ... (next): $\S 2.5$. Congruence of integers
- 1967: George McCarty: Topology: An Introduction with Application to Topological Groups ... (previous) ... (next): Chapter $\text{I}$: Sets and Functions: Relations
- 1968: Ian D. Macdonald: The Theory of Groups ... (previous) ... (next): Appendix: Elementary set and number theory
- 1969: C.R.J. Clapham: Introduction to Abstract Algebra ... (previous) ... (next): Chapter $1$: Integral Domains: $\S 6$. The Residue Classes
- 1970: B. Hartley and T.O. Hawkes: Rings, Modules and Linear Algebra ... (previous) ... (next): Chapter $1$: Rings - Definitions and Examples: $2$: Some examples of rings: Ring Example $2$
- 1975: T.S. Blyth: Set Theory and Abstract Algebra ... (previous) ... (next): $\S 6$. Indexed families; partitions; equivalence relations: Example $6.5$
- 1977: Gary Chartrand: Introductory Graph Theory ... (previous) ... (next): Appendix $\text{A}.3$: Equivalence Relations
- 1978: John S. Rose: A Course on Group Theory ... (previous) ... (next): $0$: Some Conventions and some Basic Facts
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): $\S 14$: Congruence modulo $m$ ($m \in \N$)
- 1979: John E. Hopcroft and Jeffrey D. Ullman: Introduction to Automata Theory, Languages, and Computation ... (previous) ... (next): Chapter $1$: Preliminaries: $1.5$ Relations: Equivalence Relations: Example $1.4$
- 1982: Martin Davis: Computability and Unsolvability (2nd ed.) ... (previous) ... (next): Appendix $1$: Some Results from the Elementary Theory of Numbers: Definition $4$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): congruence modulo $n$ (C.F. Gauss, 1801)
- 2008: David Joyner: Adventures in Group Theory (2nd ed.) ... (previous) ... (next): Chapter $2$: 'And you do addition?': $\S 2.3$: Relations: Example $2.3.4$
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): congruence modulo $n$ (C.F. Gauss, 1801)
- 2008: Ian Stewart: Taming the Infinite ... (previous) ... (next): Chapter $7$: Patterns in Numbers: Gauss
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): congruence