Definition:Natural Numbers/Axiomatization

From ProofWiki
Jump to navigation Jump to search

Definition

The natural numbers $\N$ can be axiomatised in the following ways:


Peano's Axioms

Peano's Axioms are intended to reflect the intuition behind $\N$, the mapping $s: \N \to \N: \map s n = n + 1$ and $0$ as an element of $\N$.


Let there be given a set $P$, a mapping $s: P \to P$, and a distinguished element $0$.

Historically, the existence of $s$ and the existence of $0$ were considered the first two of Peano's Axioms:

\((\text P 1)\)   $:$   \(\ds 0 \in P \)    $0$ is an element of $P$      
\((\text P 2)\)   $:$     \(\ds \forall n \in P:\) \(\ds \map s n \in P \)    For all $n \in P$, its successor $\map s n$ is also in $P$      

The other three are as follows:

\((\text P 3)\)   $:$     \(\ds \forall m, n \in P:\) \(\ds \map s m = \map s n \implies m = n \)    $s$ is injective      
\((\text P 4)\)   $:$     \(\ds \forall n \in P:\) \(\ds \map s n \ne 0 \)    $0$ is not in the image of $s$      
\((\text P 5)\)   $:$     \(\ds \forall A \subseteq P:\) \(\ds \paren {0 \in A \land \paren {\forall z \in A: \map s z \in A} } \implies A = P \)    Principle of Mathematical Induction:      
Any subset $A$ of $P$, containing $0$ and      
closed under $s$, is equal to $P$      


Naturally Ordered Semigroup

The concept of a naturally ordered semigroup is intended to capture the behaviour of the natural numbers $\N$, addition $+$ and the ordering $\le$ as they pertain to $\N$.


Naturally Ordered Semigroup Axioms

A naturally ordered semigroup is a (totally) ordered commutative semigroup $\struct {S, \circ, \preceq}$ satisfying:

\((\text {NO} 1)\)   $:$   $S$ is well-ordered by $\preceq$      \(\ds \forall T \subseteq S:\) \(\ds T = \O \lor \exists m \in T: \forall n \in T: m \preceq n \)      
\((\text {NO} 2)\)   $:$   $\circ$ is cancellable in $S$      \(\ds \forall m, n, p \in S:\) \(\ds m \circ p = n \circ p \implies m = n \)      
\(\ds p \circ m = p \circ n \implies m = n \)      
\((\text {NO} 3)\)   $:$   Existence of product      \(\ds \forall m, n \in S:\) \(\ds m \preceq n \implies \exists p \in S: m \circ p = n \)      
\((\text {NO} 4)\)   $:$   $S$ has at least two distinct elements      \(\ds \exists m, n \in S:\) \(\ds m \ne n \)      


1-Based Natural Numbers

The following axioms capture the behaviour of $\N_{>0}$, the element $1 \in \N_{>0}$, and the operations $+$ and $\times$ as they pertain to $\N_{>0}$:

\((\text A)\)   $:$     \(\ds \exists_1 1 \in \N_{> 0}:\) \(\ds a \times 1 = a = 1 \times a \)      
\((\text B)\)   $:$     \(\ds \forall a, b \in \N_{> 0}:\) \(\ds a \times \paren {b + 1} = \paren {a \times b} + a \)      
\((\text C)\)   $:$     \(\ds \forall a, b \in \N_{> 0}:\) \(\ds a + \paren {b + 1} = \paren {a + b} + 1 \)      
\((\text D)\)   $:$     \(\ds \forall a \in \N_{> 0}, a \ne 1:\) \(\ds \exists_1 b \in \N_{> 0}: a = b + 1 \)      
\((\text E)\)   $:$     \(\ds \forall a, b \in \N_{> 0}:\) \(\ds \)Exactly one of these three holds:\( \)      
\(\ds a = b \lor \paren {\exists x \in \N_{> 0}: a + x = b} \lor \paren {\exists y \in \N_{> 0}: a = b + y} \)      
\((\text F)\)   $:$     \(\ds \forall A \subseteq \N_{> 0}:\) \(\ds \paren {1 \in A \land \paren {z \in A \implies z + 1 \in A} } \implies A = \N_{> 0} \)