Nagata-Smirnov Metrization Theorem/Sufficient Condition
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Theorem
Let $T = \struct {S, \tau}$ be a regular topological space.
Let $T$ have a basis that is $\sigma$-locally finite
Then:
- $T$ is metrizable
Proof
Let $\BB = \ds \bigcup_{n \mathop \in \N} \BB_n$ be a $\sigma$-locally finite basis where $\BB_n$ is locally finite set of subsets for each $n \in \N$.
From T3 Space with Sigma-Locally Finite Basis is Perfectly T4 Space:
- $T$ is a perfectly $T_4$ space
Let $I = \set{\tuple{B, n} : B \in \BB, B \in \BB_n}$.
By definition of perfectly $T_4$ space:
- $\forall \tuple{B, n} \in I : \exists$ continuous $f_{\tuple{B, n}} : S \to \closedint 0 1 : B = \set{x \in S : \map {f_{\tuple{B, n}}} x \ne 0}$
Let $\alpha$ be the cardinality of $I$.
Let $H^\alpha$ be the generalized Hilbert sequence space of weight $\alpha$.
That is, $H^\alpha = \struct {A, d_2}$ where:
- $A$ is the set of all real-valued functions $x : I \to \R$ such that:
- $(1)\quad \set{i \in I: x_i \ne 0}$ is countable
- $(2)\quad$ the generalized sum $\ds \sum_{i \mathop \in I} x_i^2$ is a convergent net.
and
- $d_2: A \times A \to \R$ is the real-valued function defined as:
- $\ds \forall x = \family {x_i}, y = \family {y_i} \in A: \map {d_2} {x, y} := \paren {\sum_{i \mathop \in I} \paren {x_i- y_i}^2}^{\frac 1 2}$
We have $H^\alpha$ is a metric space from Generalized Hilbert Sequence Space is Metric Space.
Lemma $1$
- $\forall x \in S$ and $n \in \N$:
- the generalized sum $\ds \sum_{B \mathop \in \BB_n} \map {f_{\tuple {B, n} }^2} x$ converges
$\Box$
Let $g_n : S \to \closedint 0 1$ be the mapping defined by:
- $\map {g_n} x$ is the limit of the generalized sum $\ds \sum_{B \in \BB_n} \map {f_{\tuple{B, n}}^2} x$
From Lemma 1:
- $\forall n \in \N : g_n : S \to \closedint 0 1$ is well-defined
For all $n \in \N$, let:
- $I_n = \set{\tuple{B, k} \in I : k \ge n}$
By definition of $I$ and $I_0$:
- $I = I_0$
Lemma $2$
- for all $n \in \N$ and $x \in S$:
- the generalized sum $\ds \sum_{\tuple{B, k} \mathop \in I_n} \sqbrk{\dfrac 1 {\paren{\sqrt 2}^k} \dfrac {\map {f_{\tuple{B, k}}} x} {\sqrt {1 + \map {g_k} x}}}^2$ converges
and:
- $\ds \sum_{\tuple{B, k} \mathop \in I_n} \sqbrk{\dfrac 1 {\paren{\sqrt 2}^k} \dfrac {\map {f_{\tuple{B, k}}} x} {\sqrt {1 + \map {g_k} x}}}^2 \le \sum_{m \mathop = n}^\infty \dfrac 1 {2^k}$
$\Box$
From Lemma $2$:
- $\forall x \in S : \ds \family{\dfrac 1 {\paren{\sqrt 2}^n} \dfrac {\map {f_{\tuple{B, n}}} x} {\sqrt {1 + \map {g_n} x}}}_{\tuple{B, n} \in I} \in H^\alpha$
For each $\tuple{B, n} \in I$, let:
- $F_{\tuple{B, n}} : S \to \R$ be the mapping defined by:
- $\forall x \in S : \map {F_{\tuple{B, n}}} x = \dfrac 1 {\paren{\sqrt 2}^n} \dfrac {\map {f_{\tuple{B, n}}} x} {\sqrt {1 + \map {g_n} x}}$
From Multiple Rule for Continuous Mapping to Normed Division Ring:
- $\forall \tuple{B, n} \in I : F_{\tuple{B, n}}$ is continuous
Let $F : S \to H^\alpha$ be the mapping defined by:
\(\ds \forall x \in S: \, \) | \(\ds \map F x\) | \(=\) | \(\ds \family{\map {F_{\tuple{B, n} } } x}_{\tuple{B, n} \in I}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \family{\dfrac 1 {\paren{\sqrt 2}^n} \dfrac {\map {f_{\tuple{B, n} } } x} {\sqrt {1 + \map {g_n} x} } }_{\tuple{B, n} \in I}\) |
Let $X$ be $\map F S$ with the subspace metric from the generalized Hilbert sequence space $H^\alpha$:
- $d_2: \map F S \times \map F S: \to \R$ be the real-valued function defined as:
- $\ds \forall x = \family {x_i}, y = \family {y_i} \in \map F S: \map {d_2} {x, y} := \paren {\sum_{i \mathop \in I} \paren {x_i- y_i}^2}^{\frac 1 2}$
From Subspace of Metric Space is Metric Space:
- $X$ is a metric space
Let $G : T \to X$ be the mapping defined by:
\(\ds \forall x \in S: \, \) | \(\ds \map G x\) | \(=\) | \(\ds \map F x\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \family{\map {F_{\tuple{B, n} } } x}_{\tuple{B, n} \in I}\) |
It follows that $G$ is a surjection.
$G$ is an Injection
We show that $G$ is an injection.
Let $x, y \in S : x \ne y$.
From Characterization of T1 Space using Basis:
- $\exists n \in \N, B \in \BB_n : x \in B, y \notin B$
Hence:
- $\map {f_{\tuple{B, n}}} x \ne 0, \map {f_{\tuple{B, n}}} y = 0$
It follows that:
- $\map {F_{\tuple{B, n}}} x \ne 0, \map {F_{\tuple{B, n}}} y = 0$
So:
- $\map {F_{\tuple{B, n}}} x \ne \map {F_{\tuple{B, n}}} y$
Hence:
- $\map G x \ne \map G y$
It follows that $G$ is an injection.
$\Box$
$G$ is a continuous mapping
We show that $G$ is everywhere continuous.
Let $x \in S$.
Let $\epsilon \in \R_{\mathop > 0}$.
From Sum of Infinite Geometric Sequence:
- $\ds \sum_{n \mathop = 0}^\infty \dfrac 1 {2^n}$ is convergent
From Tail of Convergent Series tends to Zero:
- $(1) \quad \exists N \in \N : \ds \sum_{n \mathop = N}^\infty \dfrac 1 {2^n} < \dfrac {\epsilon^2} 4$
By definition of locally finite set of subsets:
- $\forall n < N : \exists U_n \in \tau : x \in U_n : \set{B \in \BB_n : B \cap U_n \ne \O}$ is finite
From Set Intersection Preserves Subsets:
- $\forall n < N : \forall B \in \BB_n : B \cap \set x \subseteq B \cap U_n$
From Subset of Empty Set iff Empty:
- $\forall n < N : \set{B \in \BB_n : x \in B} \subseteq \set{B \in \BB_n : B \cap U_n \ne \O}$
From Subset of Finite Set is Finite:
- $\forall n < N : \set{B \in \BB_n : x \in B}$ is finite
From Union of Finite Sets is Finite:
- $\set{B \in \ds \bigcup_{n \mathop < N} \BB_n : x \in B}$ is finite
Let:
- $\set{B_1, B_2, \ldots, B_m} = \set{B \in \ds \bigcup_{n \mathop < N} \BB_n : x \in B}$
Furthermore:
- $\forall B \in \ds \bigcup_{n \mathop < N} \BB_n \setminus \set{B_1, B_2, \ldots, B_m} : x \notin B$
Let $E = \set{\tuple{B_1, n_1}, \tuple{B_2, n_2}, \ldots, \tuple{B_m, n_m}}$ where for each $k \in \closedint 1 m$:
- $n_k < N$
- $B_k \in \BB_{n_k}$
By definition of continuity:
- $\forall k \in \closedint 1 m : \exists V_k \in \tau : x \in V_k \subseteq U_{n_k}$:
- $\forall y \in V_k : \size{\map {F_{\tuple{B_{n_k}, n_k}}} x - \map {F_{\tuple{B_{n_k}, n_k}}} y } < \dfrac \epsilon {\sqrt {2 m}}$
Let $V = \ds \bigcap_{k = 1}^m V_k$.
We have:
- $x \in V$
and
- $(2) \quad \forall y \in V : \forall k \in \closedint 1 m : \size{\map {F_{\tuple{B_{n_k}, n_k}}} x - \map {F_{\tuple{B_{n_k}, n_k}}} y } < \dfrac \epsilon {\sqrt {2 m}}$
Let:
- $I_{N - 1} = \set{\tuple{B, n} \in I : n < N}$
Hence $E$ is a finite subset of $I_{N - 1}$
Let:
- $y \in V$
Then:
- $\forall \tuple{B, n} \in I_{N - 1} \setminus E : \map {F_{\tuple{B, n} } } x = \map {F_{\tuple{B, n_k} } } y = 0$
Hence:
- $\forall \tuple{B, n} \in I_{N - 1} \setminus E : \paren{\map {F_{\tuple{B, n} } } x - \map {F_{\tuple{B, n} } } y }^2 = 0$
We have:
\(\ds \map {d_2} {\map G x, \map G y}^2\) | \(=\) | \(\ds \sum_{\tuple{B, n} \mathop \in I} \paren{\map {F_{\tuple{B, n} } } x - \map {F_{\tuple{B, n_k} } } y }^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{\tuple{B, n} \mathop \in I \setminus I_N } \paren{\map {F_{\tuple{B, n} } } x - \map {F_{\tuple{B, n} } } y }^2\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \quad + \sum_{\tuple{B, n} \mathop \in I_N} \paren{\map {F_{\tuple{B, n} } } x - \map {F_{\tuple{B, n} } } y }^2\) | Absolutely Convergent Generalized Sum over Union of Disjoint Index Sets | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{\tuple{B, n} \mathop \in E } \paren{\map {F_{\tuple{B, n} } } x - \map {F_{\tuple{B, n} } } y }^2\) | Generalized Sum Restricted to Non-zero Summands | |||||||||||
\(\ds \) | \(\) | \(\ds \quad + \sum_{\tuple{B, n} \mathop \in I_N} \paren{\map {F_{\tuple{B, n} } } x - \map {F_{\tuple{B, n} } } y }^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^m \paren{\map {F_{\tuple{B_k, n_k} } } x - \map {F_{\tuple{B_k, n_n} } } y }^2\) | Definition of Summation over Finite Index | |||||||||||
\(\ds \) | \(\) | \(\ds \quad + \sum_{\tuple{B, n} \mathop \in I_N} \paren{\map {F_{\tuple{B, n} } } x - \map {F_{\tuple{B, n} } } y }^2\) | ||||||||||||
\(\ds \) | \(<\) | \(\ds \sum_{k \mathop = 1}^m \dfrac {\epsilon^2} {2 m} + \sum_{\tuple{B, n} \mathop \in I_N} \paren{\map {F_{\tuple{B, n} } } x - \map {F_{\tuple{B, n} } } y }^2\) | from $(2)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds m \dfrac {\epsilon^2} {2 m} + \sum_{\tuple{B, n} \mathop \in I_N} \paren{\map {F_{\tuple{B, n} } } x - \map {F_{\tuple{B, n} } } y }^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\epsilon^2} 2 + \sum_{\tuple{B, n} \mathop \in I_N} \paren{\map {F_{\tuple{B, n} } } x - \map {F_{\tuple{B, n} } } y }^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\epsilon^2} 2 + \sum_{\tuple{B, n} \mathop \in I_N} \paren{\map {F_{\tuple{B, n} } } x}^2 - 2 \map {F_{\tuple{B, n} } } x \map {F_{\tuple{B, n} } } y + \paren{\map {F_{\tuple{B, n} } } y }^2\) | Square of Difference | |||||||||||
\(\ds \) | \(\le\) | \(\ds \dfrac {\epsilon^2} 2 + \sum_{\tuple{B, n} \mathop \in I_N} \paren{\map {F_{\tuple{B, n} } } x}^2 + \paren{\map {F_{\tuple{B, n} } } y }^2\) | Inequality Rule for Absolutely Convergent Generalized Sums | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\epsilon^2} 2 + \sum_{\tuple{B, n} \mathop \in I_N } \paren{\map {F_{\tuple{B, n} } } x}^2 + \sum_{\tuple{B, n} \mathop \in I_N } \paren{\map {F_{\tuple{B, n} } } y }^2\) | Sum Rule for Convergent Nets | |||||||||||
\(\ds \) | \(\le\) | \(\ds \dfrac {\epsilon^2} 2 + \sum_{n \mathop = N}^\infty \dfrac 1 {2^k} + \sum_{n \mathop = N}^\infty \dfrac 1 {2^k}\) | Lemma 2 | |||||||||||
\(\ds \) | \(<\) | \(\ds \dfrac {\epsilon^2} 2 + \dfrac {\epsilon^2} 4 + \dfrac {\epsilon^2} 4\) | from $(1)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \epsilon^2\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map {d_2} {\map G x, \map G y}\) | \(<\) | \(\ds \epsilon\) |
Since $y$ was arbitrary, it follows that:
- $\forall y \in V : \map {d_2} {\map G x, \map G y} < \epsilon$
Since $\epsilon$ was arbitrary, it follows that:
- $\forall \epsilon \in \R_{ > 0} : \exists V \in \tau : x \in V : \forall y \in V : \map {d_2} {\map G x, \map G y} < \epsilon$
It follows that $G$ is continuous at $x$.
Since $x$ was arbitrary, it follows that:
- $G$ is everywhere continuous
$\Box$
$G$ is a closed mapping
We show that $G$ is a closed mapping.
Let $Z \subseteq S$ be a closed set.
Let $\map G x \notin G \sqbrk Z$.
By definition of image of set under mapping:
- $x \notin Z$
By definition of regular space:
- $\exists U, V \in \tau : x \in U, Z \subseteq V : U \cap V = \O$
By definition of basis:
- $\exists m \in \N : \exists C \in \BB_m : x \in C : C \subseteq U$
From Subsets of Disjoint Sets are Disjoint:
- $C \cap Z = \O$
By definition of $f_{\tuple{C, m}}$:
- $\map {f_{\tuple{C, m}}} x \ne 0$ and $f_{\tuple{C, m}} \sqbrk Z = \set{0}$
Hence:
- $\map {F_{\tuple{C, m}}} x \ne 0$ and $F_{\tuple{C, m}} \sqbrk Z = \set{0}$
We have:
\(\ds \forall \map G z \in G \sqbrk Z: \, \) | \(\ds \paren{\map {d_2} {\map G x, \map G z} }^2\) | \(=\) | \(\ds \paren{\map {d_2} {\map F x, \map F z} }^2\) | definition of $G$ | ||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{\tuple{B, n} \in I} \paren{\map {F_\tuple{B, n} } x - \map {F_\tuple{B, n} } z}^2\) | definition of $d_2$ | |||||||||||
\(\ds \) | \(\ge\) | \(\ds \paren{\map {F_\tuple{C, m} } x - \map {F_\tuple{C, m} } z}^2\) | Absolutely Convergent Generalized Sum Converges to Supremum | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren{\map {F_\tuple{C, m} } x}^2\) | as $F_{\tuple{C, m} } \sqbrk Z = \set{0}$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \forall \map G z \in G \sqbrk Z: \, \) | \(\ds \map {d_2} {\map G x, \map G z}\) | \(\ge\) | \(\ds \map {F_\tuple{C, m} } x\) | Power Function is Strictly Increasing on Positive Elements |
Hence:
\(\ds \map {d_2} {\map G x, G \sqbrk Z}\) | \(=\) | \(\ds \inf \set{\map {d_2} {\map G x, \map G z} : \map G z \in G \sqbrk Z}\) | Definition of Distance between Element and Subset of Metric Space | |||||||||||
\(\ds \) | \(\ge\) | \(\ds \map {F_\tuple{C, m} } x\) | Definition of Infimum | |||||||||||
\(\ds \) | \(>\) | \(\ds 0\) | as $\map {F_{\tuple{C, m} } } x \ne 0$ |
From Subset of Metric Space is Closed iff contains all Zero Distance Points:
- $G \sqbrk C$ is closed in $X$
Since $C$ was arbitrary, it follows:
It follows that $G$ is a closed mapping by definition.
$\Box$
By definition of homeomorphism:
- $T$ is homeomorphic to the metric subspace $X$ of $H^\alpha$
It follows that $T$ is metrizable by definition.
$\blacksquare$