# P-Product Metrics on Real Vector Space are Topologically Equivalent

Work In ProgressIn particular: This can be connected with the theory of Lamé Curves.You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by completing it.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{WIP}}` from the code. |

This article needs proofreading.Please check it for mathematical errors.If you believe there are none, please remove `{{Proofread}}` from the code.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{Proofread}}` from the code. |

## Theorem

For $n \in \N$, let $\R^n$ be an Euclidean space.

Let $p \in \R_{\ge 1}$.

Let $d_p$ be the $p$-product metric on $\R^n$.

Let $d_\infty$ be the Chebyshev distance on $\R^n$.

Then $d_p$ and $d_\infty$ are topologically equivalent.

## Proof

Let $r, t \in \R_{\ge 1}$.

Without loss of generality, assume that $r \le t$.

For all $x, y \in \R^n$, we are going to show that:

- $\map {d_r} {x, y} \ge \map {d_\infty} {x, y} \ge n^{-1} \map {d_r} {x, y}$

Then we can demonstrate Lipschitz equivalence between all of these metrics, from which topological equivalence follows.

Let $d_r$ be the metric defined as:

- $\ds \map {d_r} {x, y} = \paren {\sum_{i \mathop = 1}^n \size {x_i - y_i}^r}^{1/r}$

### Inequalities for Chebyshev Distance

By definition of the Chebyshev distance on $\R^n$, we have:

- $\ds \map {d_\infty} {x, y} = \max_{i \mathop = 1}^n \size {x_i - y_i}$

where $x = \tuple {x_1, x_2, \ldots, x_n}$ and $y = \tuple {y_1, y_2, \ldots, y_n}$.

Let $j$ be chosen so that:

- $\ds \size {x_j - y_j} = \max_{i \mathop = 1}^n \size {x_i - y_i}$

Then:

\(\ds \map {d_\infty} {x, y}\) | \(=\) | \(\ds \paren {\size {x_j - y_j}^p}^{1/p}\) | ||||||||||||

\(\ds \) | \(\le\) | \(\ds \paren {\sum_{i \mathop = 1}^n \size {x_i - y_i}^p}^{1/p}\) | Power of Maximum is not Greater than Sum of Powers | |||||||||||

\(\ds \) | \(=\) | \(\ds \map {d_p} {x, y}\) | ||||||||||||

\(\ds \) | \(\le\) | \(\ds \paren {n \size {x_j - y_j}^p}^{1/p}\) | Sum of $r$ Powers is not Greater than $r$ times Power of Maximum | |||||||||||

\(\ds \) | \(=\) | \(\ds n^{1/p} \size {d_\infty} {x, y}\) |

$\Box$

### Inequality for General Case

We show that $\ds \map {d_r} {x, y} \ge \map {d_t} {x, y}$, which is equivalent to proving that:

- $\ds \paren {\sum_{i \mathop = 1}^n \size {x_i - y_i}^r}^{1/r} \ge \paren {\sum_{i \mathop = 1}^n \size {x_i - y_i}^t}^{1/t}$

Let $\forall i \in \closedint 1 n: s_i = \size {x_i - y_i}$.

Suppose $s_k = 0$ for some $k \in \closedint 1 n$.

Although this article appears correct, it's inelegant. There has to be a better way of doing it.In particular: Putting off the analysis of s_k being 0 until near the end of the proof should shorten it without losing any clarity.You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by redesigning it.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{Improve}}` from the code.If you would welcome a second opinion as to whether your work is correct, add a call to `{{Proofread}}` the page. |

Then the problem reduces to the equivalent one of showing that:

- $\ds \paren {\sum_{i \mathop = 1}^{n - 1} \size {x_i - y_i}^r}^{1/r} \ge \paren {\sum_{i \mathop = 1}^{n - 1} \size {x_i - y_i}^t}^{1/t}$

that is, of reducing the index by $1$.

Note that when $n = 1$, from simple algebra $\map {d_r} {x, y} = \map {d_t} {x, y}$.

So, let us start with the assumption that $\forall i \in \closedint 1 n: s_i > 0$.

Let $\ds u = \sum_{i \mathop = 1}^n \size {x_i - y_i}^r = \sum_{i \mathop = 1}^n s_i^r$, and $v = \dfrac 1 r$.

From Derivative of Function to Power of Function, $\map {D_r} {u^v} = v u^{v - 1} \map {D_r} u + u^v \ln u \map {D_r} v$.

Here:

- $\ds \map {D_r} u = \sum_{i \mathop = 1}^n s_i^r \ln s_i$ from Derivative of Exponential Function and Sum Rule for Derivatives
- $\map {D_r} v = - \dfrac 1 {r^2}$ from Power Rule for Derivatives

In the case where $r = 1$, we have:

- $\map {D_r} {u^v} = 0$

When $r > 1$, we have:

\(\ds \map {D_r} {\paren {\sum_{i \mathop = 1}^n s_i^r}^{1 / r} }\) | \(=\) | \(\ds \dfrac 1 r \paren {\sum_{i \mathop = 1}^n s_i^r}^{1 / \paren {r - 1} } \paren {\sum_{i \mathop = 1}^n s_i^r \ln s_i} - \dfrac {\paren {\sum_{i \mathop = 1}^n s_i^r}^{1/r} \map \ln {\sum_{i \mathop = 1}^n s_i^r} } {r^2}\) | ||||||||||||

\(\ds \) | \(=\) | \(\ds \dfrac {\paren {\sum_{i \mathop = 1}^n s_i^r}^{1 / r} } r \paren {\dfrac {\sum_{i \mathop = 1}^n s_i^r \ln s_i} {\sum_{i \mathop = 1}^n s_i^r} - \dfrac {\map \ln {\sum_{i \mathop = 1}^n s_i^r} } r}\) | ||||||||||||

\(\ds \) | \(=\) | \(\ds \dfrac {\paren {\sum_{i \mathop = 1}^n s_i^r}^{1 / r} } r \paren {\dfrac {r \paren {\sum_{i \mathop = 1}^n s_i^r \ln s_i} - \paren {\sum_{i \mathop = 1}^n s_i^r} \map \ln {\sum_{i \mathop = 1}^n s_i^r} } {r \paren {\sum_{i \mathop = 1}^n s_i^r} } }\) | ||||||||||||

\(\ds \) | \(=\) | \(\ds K \paren {r \paren {\sum_{i \mathop = 1}^n s_i^r \ln s_i} - \paren {\sum_{i \mathop = 1}^n s_i^r} \map \ln {\sum_{i \mathop = 1}^n s_i^r} }\) | where $\ds K = \dfrac {\paren {\sum_{i \mathop = 1}^n s_i^r}^{1 / r} } {r^2 \paren {\sum_{i \mathop = 1}^n s_i^r} } > 0$ | |||||||||||

\(\ds \) | \(=\) | \(\ds K \paren {\sum_{i \mathop = 1}^n s_i^r \map \ln {s_i^r} - \paren {\sum_{i \mathop = 1}^n s_i^r} \map \ln {\sum_{i \mathop = 1}^n s_i^r} }\) | Logarithms of Powers | |||||||||||

\(\ds \) | \(=\) | \(\ds K \paren {\sum_{j \mathop = 1}^n \paren {s_j^r \paren {\map \ln {s_j^r} - \map \ln {\sum_{i \mathop = 1}^n s_i^r} } } }\) | ||||||||||||

\(\ds \) | \(=\) | \(\ds K \paren {\sum_{j \mathop = 1}^n \paren {s_j^r \map \ln {\frac {s_j^r} {\sum_{i \mathop = 1}^n s_i^r} } } }\) |

where $K > 0$ because all of $s_i, r > 0$.

For the same reason, $\ds \dfrac{s_j^r} {\sum_{i \mathop = 1}^n s_i^r} < 1$ for all $j \in \set {1, \ldots, n}$.

From Logarithm of 1 is 0 and Logarithm is Strictly Increasing, their logarithms are therefore negative.

So for $r > 1$:

- $\ds \map {D_r} {\paren {\sum_{i \mathop = 1}^n s_i^r}^{1 / r} } < 0$

So, from Derivative of Monotone Function, it follows that (given the conditions on $r$ and $s_i$) $\ds \paren {\sum_{i \mathop = 1}^n s_i^r}^{1 / r}$ is decreasing.

As we assumed $r \le t$, we have $\map {d_r} {x, y} \ge \map {d_t} {x, y}$.

$\Box$

When we combine the inequalities, we have:

Although this article appears correct, it's inelegant. There has to be a better way of doing it.In particular: In fact, this inequality (for real $r \ge 1$) can be established quite easily without the humongous calculation.You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by redesigning it.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{Improve}}` from the code.If you would welcome a second opinion as to whether your work is correct, add a call to `{{Proofread}}` the page. |

- $\map {d_r} {x, y} \ge \map {d_\infty} {x, y} \ge n^{-1} \map {d_1} {x, y} \ge n^{-1} \map {d_r} {x, y}$

Therefore, $d_r$ and $d_\infty$ are Lipschitz equivalent for all $r \in \R_{\ge 1}$.

$\blacksquare$

## Sources

- 1975: W.A. Sutherland:
*Introduction to Metric and Topological Spaces*... (previous) ... (next): $2$: Continuity generalized: metric spaces: $2.4$: Equivalent metrics: Example $2.4.5$ - 1975: W.A. Sutherland:
*Introduction to Metric and Topological Spaces*... (previous) ... (next): $2$: Continuity generalized: metric spaces: Exercise $2.6: 18$