Prime Number/Sequence
Sequence of Prime Numbers
The sequence of prime numbers starts:
- $2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, \ldots$
This sequence is A000040 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).
Table of Prime Numbers
The prime numbers smaller than $1000$ are tabulated as follows.
In the following, $\map p n$ denotes the $n$th prime number.
$\quad \begin{array} {|r|r|}
\hline
n & \map p n \\
\hline
1 & 2 \\
2 & 3 \\
3 & 5 \\
4 & 7 \\
5 & 11 \\
6 & 13 \\
7 & 17 \\
8 & 19 \\
9 & 23 \\
10 & 29 \\
11 & 31 \\
12 & 37 \\
13 & 41 \\
14 & 43 \\
15 & 47 \\
16 & 53 \\
17 & 59 \\
18 & 61 \\
19 & 67 \\
20 & 71 \\
\hline
\end{array} \qquad
\begin{array} {|r|r|}
\hline
n & \map p n \\
\hline
21 & 73 \\
22 & 79 \\
23 & 83 \\
24 & 89 \\
25 & 97 \\
26 & 101 \\
27 & 103 \\
28 & 107 \\
29 & 109 \\
30 & 113 \\
31 & 127 \\
32 & 131 \\
33 & 137 \\
34 & 139 \\
35 & 149 \\
36 & 151 \\
37 & 157 \\
38 & 163 \\
39 & 167 \\
40 & 173 \\
\hline
\end{array} \qquad
\begin{array} {|r|r|}
\hline
n & \map p n \\
\hline
41 & 179 \\
42 & 181 \\
43 & 191 \\
44 & 193 \\
45 & 197 \\
46 & 199 \\
47 & 211 \\
48 & 223 \\
49 & 227 \\
50 & 229 \\
51 & 233 \\
52 & 239 \\
53 & 241 \\
54 & 251 \\
55 & 257 \\
56 & 263 \\
57 & 269 \\
58 & 271 \\
59 & 277 \\
60 & 281 \\
\hline
\end{array} \qquad
\begin{array} {|r|r|}
\hline
n & \map p n \\
\hline
61 & 283 \\
62 & 293 \\
63 & 307 \\
64 & 311 \\
65 & 313 \\
66 & 317 \\
67 & 331 \\
68 & 337 \\
69 & 347 \\
70 & 349 \\
71 & 353 \\
72 & 359 \\
73 & 367 \\
74 & 373 \\
75 & 379 \\
76 & 383 \\
77 & 389 \\
78 & 397 \\
79 & 401 \\
80 & 409 \\
\hline
\end{array} \qquad
\begin{array} {|r|r|}
\hline
n & \map p n \\
\hline
81 & 419 \\
82 & 421 \\
83 & 431 \\
84 & 433 \\
85 & 439 \\
86 & 443 \\
87 & 449 \\
88 & 457 \\
89 & 461 \\
90 & 463 \\
91 & 467 \\
92 & 479 \\
93 & 487 \\
94 & 491 \\
95 & 499 \\
96 & 503 \\
97 & 509 \\
98 & 521 \\
99 & 523 \\
100 & 541 \\
\hline
\end{array} \qquad
\begin{array} {|r|r|}
\hline
n & \map p n \\
\hline
101 & 547 \\
102 & 557 \\
103 & 563 \\
104 & 569 \\
105 & 571 \\
106 & 577 \\
107 & 587 \\
108 & 593 \\
109 & 599 \\
110 & 601 \\
111 & 607 \\
112 & 613 \\
113 & 617 \\
114 & 619 \\
115 & 631 \\
116 & 641 \\
117 & 643 \\
118 & 647 \\
119 & 653 \\
120 & 659 \\
\hline
\end{array} \qquad
\begin{array} {|r|r|}
\hline
n & \map p n \\
\hline
121 & 661 \\
122 & 673 \\
123 & 677 \\
124 & 683 \\
125 & 691 \\
126 & 701 \\
127 & 709 \\
128 & 719 \\
129 & 727 \\
130 & 733 \\
131 & 739 \\
132 & 743 \\
133 & 751 \\
134 & 757 \\
135 & 761 \\
136 & 769 \\
137 & 773 \\
138 & 787 \\
139 & 797 \\
140 & 809 \\
\hline
\end{array} \qquad
\begin{array} {|r|r|}
\hline
n & \map p n \\
\hline
141 & 811 \\
142 & 821 \\
143 & 823 \\
144 & 827 \\
145 & 829 \\
146 & 839 \\
147 & 853 \\
148 & 857 \\
149 & 859 \\
150 & 863 \\
151 & 877 \\
152 & 881 \\
153 & 883 \\
154 & 887 \\
155 & 907 \\
156 & 911 \\
157 & 919 \\
158 & 929 \\
159 & 937 \\
160 & 941 \\
\hline
\end{array} \qquad
\begin{array} {|r|r|}
\hline
n & \map p n \\
\hline
161 & 947 \\
162 & 953 \\
163 & 967 \\
164 & 971 \\
165 & 977 \\
166 & 983 \\
167 & 991 \\
168 & 997 \\
\hline
\end{array}$
Sources
- 1971: George E. Andrews: Number Theory ... (previous) ... (next): $\text {2-2}$ Divisibility
- 1971: Allan Clark: Elements of Abstract Algebra ... (previous) ... (next): Chapter $1$: Properties of the Natural Numbers: $\S 22$
- 1979: G.H. Hardy and E.M. Wright: An Introduction to the Theory of Numbers (5th ed.) ... (previous) ... (next): $\text I$: The Series of Primes: $1.4$ The sequence of primes
- 1982: P.M. Cohn: Algebra Volume 1 (2nd ed.) ... (previous) ... (next): Chapter $2$: Integers and natural numbers: $\S 2.2$: Divisibility and factorization in $\mathbf Z$: Theorem $5$
- 1992: George F. Simmons: Calculus Gems ... (previous) ... (next): Chapter $\text {A}.31$: Chebyshev ($\text {1821}$ – $\text {1894}$)
- 1992: George F. Simmons: Calculus Gems ... (previous) ... (next): Chapter $\text {B}.2$: More about Numbers: Irrationals, Perfect Numbers and Mersenne Primes
- 1992: George F. Simmons: Calculus Gems ... (previous) ... (next): Chapter $\text {B}.16$: The Sequence of Primes
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): prime
- 2004: Richard K. Guy: Unsolved Problems in Number Theory (3rd ed.) ... (previous) ... (next): $\text A$. Prime Numbers
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): prime
- 2008: Ian Stewart: Taming the Infinite ... (previous) ... (next): Chapter $7$: Patterns in Numbers: Primes