Primitive of Arcsine of x over a
Jump to navigation
Jump to search
Theorem
- $\ds \int \arcsin \frac x a \rd x = x \arcsin \frac x a + \sqrt {a^2 - x^2} + C$
Proof 1
\(\ds \int \arcsin x \rd x\) | \(=\) | \(\ds x \arcsin x + \sqrt {1 - x^2} + C\) | Primitive of $\arcsin x$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \arcsin \frac x a \rd x\) | \(=\) | \(\ds \frac 1 {1 / a} \paren {\frac x a \arcsin \frac x a + \sqrt {1 - \paren {\dfrac x a}^2} } + C\) | Primitive of Function of Constant Multiple | ||||||||||
\(\ds \) | \(=\) | \(\ds x \arcsin \frac x a + \sqrt {a^2 - x^2} + C\) | after simplifying |
$\blacksquare$
Proof 2
Let:
\(\ds u\) | \(=\) | \(\ds \arcsin \frac x a\) | ||||||||||||
\(\text {(1)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds \sin u\) | \(=\) | \(\ds \frac x a\) | Definition of Real Arcsine | |||||||||
\(\text {(2)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds \cos u\) | \(=\) | \(\ds \sqrt {1 - \frac {x^2} {a^2} }\) | Sum of Squares of Sine and Cosine |
Then:
\(\ds \int \arcsin \frac x a \rd x\) | \(=\) | \(\ds a \int u \cos u \rd u\) | Primitive of Function of Arcsine | |||||||||||
\(\ds \) | \(=\) | \(\ds a \paren {\cos u + u \sin u} + C\) | Primitive of $x \cos a x$ | |||||||||||
\(\ds \) | \(=\) | \(\ds a \paren {\cos u + u \frac x a} + C\) | Substitution for $\sin u$ from $\paren 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds a \paren {\sqrt {1 - \frac {x^2} {a^2} } + u \frac x a} + C\) | Substitution for $\cos u$ from $\paren 2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds a \paren {\sqrt {1 - \frac {x^2} {a^2} } + \frac x a \arcsin \frac x a} + C\) | Substitution for $u$ | |||||||||||
\(\ds \) | \(=\) | \(\ds x \arcsin \frac x a + \sqrt {a^2 - x^2} + C\) | simplifying |
$\blacksquare$
Proof 3
With a view to expressing the primitive in the form:
- $\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$
let:
\(\ds u\) | \(=\) | \(\ds \arcsin \frac x a\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d u} {\d x}\) | \(=\) | \(\ds \frac 1 {\sqrt {a^2 - x^2} }\) | Derivative of $\arcsin \dfrac x a$ |
and let:
\(\ds \frac {\d v} {\d x}\) | \(=\) | \(\ds 1\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds v\) | \(=\) | \(\ds x\) | Primitive of Constant |
Then:
\(\ds \int \arcsin \frac x a \rd x\) | \(=\) | \(\ds x \arcsin \frac x a - \int x \paren {\frac 1 {\sqrt {a^2 - x^2} } } \rd x + C\) | Integration by Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds x \arcsin \frac x a - \int \frac {x \rd x} {\sqrt {a^2 - x^2} } + C\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds x \arcsin \frac x a - \paren {-\sqrt {a^2 - x^2} } + C\) | Primitive of $\dfrac x {\sqrt {a^2 - x^2} }$ | |||||||||||
\(\ds \) | \(=\) | \(\ds x \arcsin \frac x a + \sqrt {a^2 - x^2} + C\) | simplifying |
$\blacksquare$
Also see
- Primitive of $\arccos \dfrac x a$
- Primitive of $\arctan \dfrac x a$
- Primitive of $\arccot \dfrac x a$
- Primitive of $\arcsec \dfrac x a$
- Primitive of $\arccsc \dfrac x a$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving Inverse Trigonometric Functions: $14.471$
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): Appendix $2$: Table of derivatives and integrals of common functions: Inverse trigonometric functions
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(24)$ Integrals Involving Inverse Trigonometric Functions: $17.24.1.$