# Symbols:Q

Previous  ... Next

## Set of Rational Numbers

$\Q$

The set of rational numbers.

The $\LaTeX$ code for $\Q$ is \Q  or \mathbb Q or \Bbb Q.

## Set of Non-Zero Rational Numbers

$\Q_{\ne 0}$
$\Q_{\ne 0} = \Q \setminus \left\{{0}\right\}$

The $\LaTeX$ code for $\Q_{\ne 0}$ is \Q_{\ne 0}  or \mathbb Q_{\ne 0} or \Bbb Q_{\ne 0}.

## Set of Non-Negative Rational Numbers

$\Q_{\ge 0}$
$\Q_{\ge 0} = \set {x \in \Q: x \ge 0}$

The $\LaTeX$ code for $\Q_{\ge 0}$ is \Q_{\ge 0}  or \mathbb Q_{\ge 0} or \Bbb Q_{\ge 0}.

## Set of Strictly Positive Rational Numbers

$\Q_{> 0}$
$\Q_{> 0} = \set {x \in \Q: x > 0}$

The $\LaTeX$ code for $\Q_{> 0}$ is \Q_{> 0}  or \mathbb Q_{> 0} or \Bbb Q_{> 0}.

## Probability

$q$

Used in conjunction with the general probability $p$:

$q = 1 - p$

As such, $q$ is a real number such that:

$0 \le q \le 1$

and

$p + q = 1$

The $\LaTeX$ code for $q$ is q .

## Quotient Mapping

$q_\mathcal R$
$q_\mathcal R: S \to S / \mathcal R: \map {q_\mathcal R} s = \eqclass s {\mathcal R}$

where:

$\mathcal R \subseteq S \times S$ be an equivalence relation on a set $S$
$\eqclass s {\mathcal R}$ is the $\mathcal R$-equivalence class of $s$
$S / \mathcal R$ is the quotient set of $S$ determined by $\mathcal R$.

Also known as:

the canonical surjection from $S$ to $S / \mathcal R$
the canonical map or canonical projection from $S$ onto $S / \mathcal R$
the natural mapping from $S$ to $S / \mathcal R$
the natural surjection from $S$ to $S / \mathcal R$
the classifying map or classifying mapping (as it classifies the elements of $S$ into those various equivalence classes)
the projection from $S$ to $S / \mathcal R$

The $\LaTeX$ code for $q_\mathcal R: S \to S / \mathcal R$ is q_\mathcal R: S \to S / \mathcal R .