Symbols:R
Radius
- $r$
Used to denote a general radius.
The $\LaTeX$ code for \(r\) is r
.
Relation
- $\RR$
Used to denote a general relation.
The $\LaTeX$ code for \(\RR\) is \RR
.
Set of Real Numbers
- $\R$
The set of real numbers.
The $\LaTeX$ code for \(\R\) is \R
or \mathbb R
or \Bbb R
.
Set of Non-Zero Real Numbers
- $\R_{\ne 0}$
The set of non-zero real numbers:
- $\R_{\ne 0} = \R \setminus \set 0$
The $\LaTeX$ code for \(\R_{\ne 0}\) is \R_{\ne 0}
or \mathbb R_{\ne 0}
or \Bbb R_{\ne 0}
.
Set of Non-Negative Real Numbers
- $\R_{\ge 0}$
The set of non-negative real numbers:
- $\R_{\ge 0} = \set {x \in \R: x \ge 0}$
The $\LaTeX$ code for \(\R_{\ge 0}\) is \R_{\ge 0}
or \mathbb R_{\ge 0}
or \Bbb R_{\ge 0}
.
Set of Strictly Positive Real Numbers
- $\R_{> 0}$
The set of strictly positive real numbers:
- $\R_{> 0} = \set {x \in \R: x > 0}$
The $\LaTeX$ code for \(\R_{> 0}\) is \R_{> 0}
or \mathbb R_{> 0}
or \Bbb R_{> 0}
.
Extended Real Number Line
- $\overline \R$
The extended set of real numbers:
- $\overline \R = \R \cup \set {+\infty, -\infty}$
The $\LaTeX$ code for \(\overline \R\) is \overline \R
.
Real Euclidean Space
- $\R^n$
Let $\R^n$ be an $n$-dimensional real vector space.
Let the Euclidean metric $d$ be applied to $\R^n$.
Then $\struct {\R^n, d}$ is a Euclidean $n$-space.
The $\LaTeX$ code for \(\R^n\) is \R^n
.
The $\LaTeX$ code for \(\struct {\R^n, d}\) is \struct {\R^n, d}
.
Radians
- $\mathrm {rad}$
The symbol for the radian is $\mathrm {rad}$.
Its $\LaTeX$ code is \mathrm {rad
.}
Real Part
- $\map \Re z$ or $\map {\mathrm {Re} } z$
The real part of a complex number $z$.
The $\LaTeX$ code for \(\map \Re z\) is \map \Re z
.
The $\LaTeX$ code for \(\map {\mathrm {Re} } z\) is \map {\mathrm {Re} } z
.
Right Ascension
- $\mathrm {RA}$
Used as an abbreviation and to denote the right ascension. Definition:Right Ascension
The $\LaTeX$ code for \(\mathrm {RA}\) is \mathrm {RA}
.