# Definition:Composition of Mappings/Definition 1

## Definition

Let $f_1: S_1 \to S_2$ and $f_2: S_2 \to S_3$ be mappings such that the domain of $f_2$ is the same set as the codomain of $f_1$.

The composite mapping $f_2 \circ f_1$ is defined as:

$\forall x \in S_1: \map {\paren {f_2 \circ f_1} } x := \map {f_2} {\map {f_1} x}$

### Commutative Diagram

The concept of composition of mappings can be illustrated by means of a commutative diagram.

This diagram illustrates the specific example of $f_2 \circ f_1$:

$\begin{xy}\[email protected]+1em{ S_1 \ar[r]^*+{f_1} \[email protected]{-->}[rd]_*[l]+{f_2 \mathop \circ f_1} & S_2 \ar[d]^*+{f_2} \\ & S_3 }\end{xy}$

## Warning

Let $f_1: S_1 \to S_2$ and $f_2: S_2 \to S_3$ be mappings such that:

$\Dom {f_2} \ne \Cdm {f_1}$

where $\Dom {f_2}$ and $\Cdm {f_1}$ denote domain and codomain respectively.

Then the composite mapping $f_2 \circ f_1$ is not defined.

Compare with the definition of composition of relations in the context of the fact that a mapping is a special kind of relation.

## Also known as

In the context of analysis, this is often found referred to as a function of a function, which (according to some sources) makes set theorists wince, as it is technically defined as a function on the codomain of a function.

Some sources call $f_2 \circ f_1$ the resultant of $f_1$ and $f_2$ or the product of $f_1$ and $f_2$.

Some authors write $f_2 \circ f_1$ as $f_2 f_1$.

Some use the notation $f_2 \cdot f_1$ or $f_2 . f_1$.

Some use the notation $f_2 \bigcirc f_1$.

Others, particularly in books having ties with computer science, write $f_1; f_2$ or $f_1 f_2$ (note the reversal of order), which is read as (apply) $f_1$, then $f_2$.

## Also see

• Results about composite mappings can be found here.