Nth Root Test
Theorem
Let $\ds \sum_{n \mathop = 1}^\infty a_n$ be a series of real numbers $\R$ or complex numbers $\C$.
Let the sequence $\sequence {a_n}$ be such that the limit superior $\ds \limsup_{n \mathop \to \infty} \size {a_n}^{1/n} = l$.
Then:
- If $l > 1$, the series $\ds \sum_{n \mathop = 1}^\infty a_n$ diverges.
- If $l < 1$, the series $\ds \sum_{n \mathop = 1}^\infty a_n$ converges absolutely.
Proof
Absolute Convergence
Let $l < 1$.
Then let us choose $\epsilon > 0$ such that $l + \epsilon < 1$.
Consider the real sequence $\sequence {b_n}$ defined by $\sequence {b_n} = \sequence {\size {a_n} }$.
Here, $\size {a_n}$ denotes either the absolute value of $a_n$, or the complex modulus of $a_n$.
Then:
- $\ds l = \limsup_{n \mathop \to \infty} {b_n}^{1/n}$
It follows from Terms of Bounded Sequence Within Bounds that for sufficiently large $n$,:
- $b_n < \paren {l + \epsilon}^n$
By Sum of Infinite Geometric Sequence, the series $\ds \sum_{n \mathop = 1}^\infty \paren {l + \epsilon}^n$ converges.
By the comparison test, $\ds \sum_{n \mathop = 1}^\infty b_n$ converges.
Hence $\ds \sum_{n \mathop = 1}^\infty a_n$ converges absolutely by the definition of absolute convergence.
$\Box$
Divergence
Let $l > 1$.
Then we choose $\epsilon > 0$ such that $l - \epsilon > 1$.
Aiming for a contradiction, suppose that there exist an upper bound for the set:
- $S := \set {n \in \N: \size {a_n}^{1/n} > l - \epsilon}$
Then for all sufficiently large $n$:
- $\size {a_n}^{1/n} \le l - \epsilon$
However, this implies that:
- $\ds \limsup_{n \mathop \to \infty} \size {a_n}^{1/n} \le l - \epsilon$
which is false by the definition of $l$.
The set $S$, then, is not bounded.
This means that there exist arbitrarily large $n$ such that:
- $\size {a_n} > \paren {l - \epsilon}^n$
Thus:
- $\ds \lim_{n \mathop \to \infty} \size {a_n} \ne 0$
and so $\ds \lim_{n \mathop \to \infty} a_n \ne 0$.
Hence from Terms in Convergent Series Converge to Zero, $\ds \sum_{n \mathop = 1}^\infty a_n$ must be divergent.
$\blacksquare$
Warning
If $l = 1$, it is impossible to say, without further analysis, whether $\ds \sum_{n \mathop = 1}^\infty a_n$ converges absolutely, converges conditionally, or diverges.
If $\ds \limsup_{n \mathop \to \infty} \size {a_n}^{1/n} = \infty$, then of course $\ds \sum_{n \mathop = 1}^\infty a_n$ diverges.
Sources
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 6.18$
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): Appendix: $\S 18.5$: Tests for convergence of series