Symbols:C

From ProofWiki
Jump to: navigation, search

Previous  ... Next

centi-

$\mathrm c$

The Système Internationale d'Unités metric scaling prefix denoting $10^{\, -2 }$.


Its $\LaTeX$ code is \mathrm {c} .

Sources


Hexadecimal

$\mathrm C$ or $\mathrm c$

The hexadecimal digit $12$.


Its $\LaTeX$ code is \mathrm C  or \mathrm c.


Sources


Roman Numerals

$\mathrm C$ or $\mathrm c$

The Roman numeral for $100$.


Its $\LaTeX$ code is \mathrm C  or \mathrm c.


Sources


The Set of Complex Numbers

$\C$

The set of complex numbers.


The $\LaTeX$ code for \(\C\) is \C  or \mathbb C or \Bbb C.


Sources


The Set of Non-Zero Complex Numbers

$\C_{\ne 0}$

The set of non-zero complex numbers:

$\C_{\ne 0} = \C \setminus \left\{{0}\right\}$


The $\LaTeX$ code for \(\C_{\ne 0}\) is \C_{\ne 0}  or \mathbb C_{\ne 0} or \Bbb C_{\ne 0}.


Deprecated

$\C^*$

The set of non-zero complex numbers:

$\C^* = \C \setminus \left\{{0}\right\}$


The $\LaTeX$ code for \(\C^*\) is \C^*  or \mathbb C^* or \Bbb C^*.


Relative Complement

$\complement_S \left({T}\right)$ or $\mathcal C_S \left({T}\right)$

Let $S$ be a set, and let $T \subseteq S$, that is: let $T$ be a subset of $S$.

Then the set difference $S \setminus T$ can be written $\relcomp S T$, and is called the relative complement of $T$ in $S$, or the complement of $T$ relative to $S$.

Thus:

$\relcomp S T = \set {x \in S : x \notin T}$


The $\LaTeX$ code for \(\complement_S \left({T}\right)\) is \complement_S \left({T}\right) .

The $\LaTeX$ code for \(\mathcal C_S \left({T}\right)\) is \mathcal C_S \left({T}\right) .


Set Complement

$\complement \left ({S}\right)$ or $\mathcal C \left ({S}\right)$

The set complement (or, when the context is established, just complement) of a set $S$ in a universe $\mathbb U$ is defined as:

$\map \complement S = \relcomp {\mathbb U} S = \mathbb U \setminus S$

See the definition of Relative Complement for the definition of $\relcomp {\mathbb U} S$.


The $\LaTeX$ code for \(\complement \left ({S}\right)\) is \complement \left ({S}\right) .

The $\LaTeX$ code for \(\mathcal C \left ({S}\right)\) is \mathcal C \left ({S}\right) .