# Symbols:C

Previous  ... Next

### centi-

$\mathrm c$

The Système Internationale d'Unités symbol for the metric scaling prefix centi, denoting $10^{\, -2 }$, is $\mathrm { c }$.

Its $\LaTeX$ code is \mathrm {c} .

### Speed of Light

$c$

The symbol for the speed of light is $c$.

Its $\LaTeX$ code is c .

$\mathrm C$ or $\mathrm c$

The hexadecimal digit $12$.

Its $\LaTeX$ code is \mathrm C  or \mathrm c.

### Roman Numeral

$\mathrm C$ or $\mathrm c$

The Roman numeral for $100$.

Its $\LaTeX$ code is \mathrm C  or \mathrm c.

### Coulomb

$\mathrm C$

The symbol for the coulomb is $\mathrm C$.

Its $\LaTeX$ code is \mathrm C .

### Cardinality of Continuum

$\mathfrak c$

The symbol for the cardinality of the continuum is $\mathfrak c$.

Its $\LaTeX$ code is \mathfrak c .

### Continuously Differentiable

$C^k$ or $\mathrm C^{\paren k}$

Let $f: \R \to \R$ be a real function.

Then $\map f x$ is of differentiability class $C^k$ if and only if:

$\dfrac {\d^k} {\d x^k} \map f x \in C$

where $C$ denotes the class of continuous real functions.

That is, $f$ is in differentiability class $k$ if and only if there exists a $k$th derivative of $f$ which is continuous.

The $\LaTeX$ code for $C^k$ is C^k .

The $\LaTeX$ code for $\mathrm C^{\paren k}$ is \mathrm C^{\paren k} .

### Smooth Real Function

$C^\infty$ or $\mathrm C^\omega$

A real function is smooth if and only if it is of differentiability class $C^\infty$.

That is, if and only if it admits of continuous derivatives of all orders.

The $\LaTeX$ code for $C^\infty$ is C^\infty .

The $\LaTeX$ code for $\mathrm C^\omega$ is \mathrm C^\omega .

### Set of Complex Numbers

$\C$

The set of complex numbers.

The $\LaTeX$ code for $\C$ is \C  or \mathbb C or \Bbb C.

### Set of Non-Zero Complex Numbers

$\C_{\ne 0}$
$\C_{\ne 0} = \C \setminus \set 0$

The $\LaTeX$ code for $\C_{\ne 0}$ is \C_{\ne 0}  or \mathbb C_{\ne 0} or \Bbb C_{\ne 0}.

### Extended Complex Plane

$\overline \C$

The extended complex plane $\overline \C$ is defined as:

$\overline \C := \C \cup \set \infty$

that is, the set of complex numbers together with the point at infinity.

The $\LaTeX$ code for $\overline \C$ is \overline \C  or \overline {\mathbb C} or \overline {\Bbb C}.

### Relative Complement

$\relcomp S T$ or $\map {\CC_S} T$

Let $S$ be a set, and let $T \subseteq S$, that is: let $T$ be a subset of $S$.

Then the set difference $S \setminus T$ can be written $\relcomp S T$, and is called the relative complement of $T$ in $S$, or the complement of $T$ relative to $S$.

Thus:

$\relcomp S T = \set {x \in S : x \notin T}$

The $\LaTeX$ code for $\relcomp S T$ is \relcomp S T .

The $\LaTeX$ code for $\map {\CC_S} T$ is \map {\CC_S} T .

### Set Complement

$\map \complement S$ or $\map \CC S$

The set complement (or, when the context is established, just complement) of a set $S$ in a universe $\mathbb U$ is defined as:

$\map \complement S = \relcomp {\mathbb U} S = \mathbb U \setminus S$

See the definition of Relative Complement for the definition of $\relcomp {\mathbb U} S$.

The $\LaTeX$ code for $\map \complement S$ is \map \complement S .

The $\LaTeX$ code for $\map \CC S$ is \map \CC S .

### Cosine

$\cos$

The $\LaTeX$ code for $\cos$ is \cos .

### Cosecant

#### csc

$\csc$

The $\LaTeX$ code for $\csc$ is \csc .

#### cosec

$\cosec$

The $\LaTeX$ code for $\cosec$ is \cosec .

### Cotangent

#### cot

$\cot$

The $\LaTeX$ code for $\cot$ is \cot .

#### ctn

$\operatorname {ctn}$

The $\LaTeX$ code for $\operatorname {ctn}$ is \operatorname {ctn} .

### Hyperbolic Cosine

#### cosh

$\cosh$

Its $\LaTeX$ code is \cosh .

#### ch

$\operatorname {ch}$

A variant of $\cosh$.

Its $\LaTeX$ code is \operatorname {ch} .

### Hyperbolic Cosecant

#### csch

$\csch$

The $\LaTeX$ code for $\csch$ is \csch .

#### cosech

$\operatorname {cosech}$

The $\LaTeX$ code for $\operatorname {cosech}$ is \operatorname {cosech} .

### Hyperbolic Cotangent

$\coth$

The $\LaTeX$ code for $\coth$ is \coth .

### Inverse Cosine

$\cos^{-1}$

Its $\LaTeX$ code is \cos^{-1} .

### Inverse Hyperbolic Cosine

#### cosh${}^{-1}$

$\cosh^{-1}$

Its $\LaTeX$ code is \cosh^{-1} .

#### ch${}^{-1}$

$\operatorname {ch}^{-1}$

A variant of $\cosh^{-1}$.

Its $\LaTeX$ code is \operatorname {ch}^{-1} .

### cis

$\cis$

The expression:

$r \cis \theta$

is a shortened form of:

$r \paren {\cos \theta + i \sin \theta}$

The $\LaTeX$ code for $\cis$ is \cis .

### Centimetre

$\mathrm {cm}$

The symbol for the centimetre is $\mathrm {cm}$:

$\mathrm c$ for centi
$\mathrm m$ for metre.

Its $\LaTeX$ code is \mathrm {cm} .

### Centimetre per Second

$\mathrm {cm \, s^{-1} }$ or $\mathrm {cm / s}$

The symbol for the centimetre per second is $\mathrm {cm \, s^{-1} }$ or, less formally, $\mathrm {cm / s}$.

The $\LaTeX$ code for $\mathrm {cm \, s^{-1} }$ is \mathrm {cm \, s^{-1} } .

The $\LaTeX$ code for $\mathrm {cm / s}$ is \mathrm {cm / s} .

### Square Centimetre

$\mathrm {cm^3}$

The symbol for the cubic centimetre is $\mathrm {cm^3}$.

The $\LaTeX$ code for $\mathrm {cm^3}$ is \mathrm {cm^3} .

### Cubic Centimetre

$\mathrm {cm^3}$

The symbol for the cubic centimetre is $\mathrm {cm^3}$.

The $\LaTeX$ code for $\mathrm {cm^3}$ is \mathrm {cm^3} .

### Cubic Centimetre: Also presented as

The symbol for the cubic centimetre is often informally presented as $\mathrm {cc}$.

Some (usually older) sources give it as $\mathrm {cu. \, cm.}$

The $\LaTeX$ code for $\mathrm {cc}$ is \mathrm {cc} .

The $\LaTeX$ code for $\mathrm {cu. \, cm.}$ is \mathrm {cu. \, cm.} .

### Candela

$\mathrm {cd}$

The symbol for the candela is $\mathrm {cd}$.

Its $\LaTeX$ code is \mathrm {cd} .

### Capacitance

$C$

The usual symbol used to denote capacitance is $C$.

Its $\LaTeX$ code is C .

### Celsius

$\cels$

The symbol for the degree Celsius is $\cels$.

The $\LaTeX$ code for $\cels$ is \cels .

### Calorie

$\mathrm {cal}$

The symbol for the calorie is $\mathrm {cal}$.

However, this is of limited usefulness unless which specific type of calorie is under discussion, for example:

the thermodynamic calorie, with symbol $\mathrm {cal_c}$
the international calorie, with symbol $\mathrm {cal_s}$.

The $\LaTeX$ code for $\mathrm {cal}$ is \mathrm {cal} .

### International Calorie

$\mathrm {cal_s}$

The symbol for the international calorie is $\mathrm {cal_s}$.

The $\LaTeX$ code for $\mathrm {cal_s}$ is \mathrm {cal_s} .

### International Calorie: Variant

$\mathrm {cal_{IT} }$

The symbol for the international calorie can also be presented as $\mathrm {cal_{IT} }$.

The $\LaTeX$ code for $\mathrm {cal_{IT} }$ is \mathrm {cal_{IT} } .

### Thermodynamic Calorie

$\mathrm {cal_c}$

The symbol for the thermodynamic calorie is $\mathrm {cal_c}$.

The $\LaTeX$ code for $\mathrm {cal_c}$ is \mathrm {cal_c} .

### Thermodynamic Calorie: Variant

$\mathrm {cal_{th} }$

The symbol for the thermodynamic calorie can also be presented as $\mathrm {cal_{th} }$.

The $\LaTeX$ code for $\mathrm {cal_{th} }$ is \mathrm {cal_{th} } .

### 4 Degree Calorie

$\mathrm {cal_4}$

The symbol for the $4 \cels$ calorie is $\mathrm {cal_4}$.

The $\LaTeX$ code for $\mathrm {cal_4}$ is \mathrm {cal_4} .

### 15 Degree Calorie

$\mathrm {cal_{15} }$

The symbol for the $15 \cels$ calorie is $\mathrm {cal_{15} }$.

The $\LaTeX$ code for $\mathrm {cal_{15} }$ is \mathrm {cal_{15} } .

### 20 Degree Calorie

$\mathrm {cal_{20} }$

The symbol for the $20 \cels$ calorie is $\mathrm {cal_{20} }$.

The $\LaTeX$ code for $\mathrm {cal_{20} }$ is \mathrm {cal_{20} } .

### Mean Calorie

$\mathrm {cal_{mean} }$

The symbol for the mean calorie is $\mathrm {cal_{mean} }$.

The $\LaTeX$ code for $\mathrm {cal_{mean} }$ is \mathrm {cal_{mean} } .

### Large Calorie

$\mathrm {Cal}$

The symbol for the large calorie is $\mathrm {Cal}$.

The $\LaTeX$ code for $\mathrm {Cal}$ is \mathrm {Cal} .

### Hundredweight

$\mathrm {cwt}$

The symbol for the hundredweight is $\mathrm {cwt}$.

The $\LaTeX$ code for $\mathrm {cwt}$ is \mathrm {cwt} .

### Square Centimetre per Second

$\mathrm {cm^2 / s}$

The symbol for the square centimetre per second is $\mathrm {cm^2 / s}$.

Its $\LaTeX$ code is \mathrm {cm^2 / s} .

$c_1$

The symbol for the first radiation constant is $c_1$.

The $\LaTeX$ code for $c_1$ is c_1 .

$c_2$
The symbol for the second radiation constant is $c_2$.
The $\LaTeX$ code for $c_2$ is c_2 .