Radon-Nikodym Theorem
This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Theorem
Let $\struct {X, \Sigma}$ be a measurable space.
Let $\mu$ and $\nu$ be $\sigma$-finite measures on $\struct {X, \Sigma}$ such that:
- $\nu$ is absolutely continuous with respect to $\mu$.
Then there exists a $\Sigma$-measurable function $g : X \to \hointr 0 \infty$ such that:
- $\ds \map \nu A = \int_A g \rd \mu$
for each $A \in \Sigma$.
Further, if $g_1 : X \to \hointr 0 \infty$ and $g_2 : X \to \hointr 0 \infty$ are such that:
- $\ds \map \nu A = \int_A g_1 \rd \mu = \int_A g_2 \rd \mu$
for each $A \in \Sigma$, then:
- $g_1 = g_2$ $\mu$-almost everywhere.
Proof
Existence
We first prove the case of $\mu$ and $\nu$ finite.
Define $\FF$ to be the set of $\Sigma$-measurable functions $f : X \to \overline \R_{\ge 0}$ with:
- $\ds \int_A f \rd \mu \le \map \nu A$
for each $A \in \Sigma$.
We show that $\FF$ is non-empty.
From Measurable Function Zero A.E. iff Absolute Value has Zero Integral, we have:
- $\ds \int_A 0 \rd \mu = 0$
for each $A \in \Sigma$, giving:
- $\ds \int_A 0 \rd \mu \le \map \nu A$
for each $A \in \Sigma$.
So the constant $0$ function is contained in $\FF$.
For each $f \in F$, we have:
- $\ds \int f \rd \mu \le \map \nu X$
Since $\nu$ is a finite measure, we have:
- $\ds \sup \set {\int f \rd \mu : f \in \FF} \le \map \nu X < \infty$
We will now show that there exists $g \in \FF$ such that:
- $\ds \int g \rd \mu = \sup \set {\int f \rd \mu : f \in \FF}$
and that this $g$ has:
- $\ds \map \nu A = \int_A g \rd \mu$
for each $A \in \Sigma$.
We now construct a increasing sequence of functions $\sequence {g_n}_{n \mathop \in \N}$ in $\FF$ such that:
- $\ds \lim_{n \mathop \to \infty} \int g_n \rd \mu = \sup \set {\int f \rd \mu : f \in \FF}$
with a view to then apply the monotone convergence theorem.
We pick $f_n \in \FF$ such that:
- $\ds \sup \set {\int f \rd \mu : f \in \FF} - \frac 1 n < \int f_n \rd \mu \le \sup \set {\int f \rd \mu : f \in \FF}$
Lemma 1
Let $\sequence {f_n}_{n \mathop \in \N}$ be a sequence in $\mathcal F$.
Then:
- for each $n \in \N$, the pointwise maximum $\max \set {f_1, f_2, \ldots, f_n}$ is contained in $\mathcal F$.
$\Box$
For each $n \in \N$ define:
- $g_n = \max \set {f_1, f_2, \ldots, f_n}$
From Lemma 1, we have:
- $g_n \in \FF$ for each $n \in \N$.
From the definition of the pointwise maximum, we have:
\(\ds g_{n + 1}\) | \(=\) | \(\ds \max \set {f_1, f_2, \ldots, f_{n + 1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \max \set {\max \set {f_1, f_2, \ldots, f_n}, f_{n + 1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \max \set {h_n, f_{n + 1} }\) | ||||||||||||
\(\ds \) | \(\ge\) | \(\ds h_n\) | Definition of Max Operation |
So $\sequence {g_n}_{n \mathop \in \N}$ is an increasing sequence.
We have:
\(\ds \int g_n \rd \mu\) | \(=\) | \(\ds \int \max \set {f_1, f_2, \ldots, f_n} \rd \mu\) | ||||||||||||
\(\ds \) | \(\ge\) | \(\ds \int f_n \rd \mu\) | Definition of Max Operation | |||||||||||
\(\ds \) | \(>\) | \(\ds \sup \set {\int f \rd \mu : f \in \FF} - \frac 1 n\) |
and, since $g_n \in \FF$, we have:
- $\ds \int g_n \rd \mu \le \sup \set {\int f \rd \mu : f \in \FF}$
from the definition of supremum.
Then from the Squeeze Theorem, we have:
- $\ds \lim_{n \mathop \to \infty} \int g_n \rd \mu = \sup \set {\int f \rd \mu : f \in \FF}$
Then $\sequence {g_n}_{n \mathop \in \N}$ is an increasing sequence in $\FF$ such that:
- $\ds \lim_{n \mathop \to \infty} \int g_n \rd \mu = \sup \set {\int f \rd \mu : f \in \FF}$
Now let:
- $\ds g = \lim_{n \mathop \to \infty} g_n$
From the Monotone Convergence Theorem, we have:
- $\ds \int g \rd \mu = \sup \set {\int f \rd \mu : f \in \FF}$
Since $f_n \in \FF$ for each $n$, we have:
- $\ds \int_A f_n \rd \mu \le \map \nu A$
for each $n$.
From Lower and Upper Bounds for Sequences, we then have:
- $\ds \int_A g \rd \mu \le \map \nu A$
So $g \in \FF$.
We now verify that:
- $\ds \map \nu A = \int_A g \rd \mu$
for each $A \in \Sigma$.
Define a function $\nu_1 : \Sigma \to \overline \R$ by:
- $\ds \map {\nu_1} A = \int_A g \rd \mu$
for each $A \in \Sigma$.
From Measure with Density is Measure, we have that:
- $\nu_1$ is a measure.
Define a function $\nu_0 : \Sigma \to \overline \R$ by:
- $\ds \map {\nu_0} A = \map \nu A - \map {\nu_1} A$
for each $A \in \Sigma$.
Since $\nu$ is a finite measure we have:
- $\ds \infty > \map \nu A \ge \int_A g \rd \mu$
We have that:
- $\ds \int_A g \rd \mu < \infty$ for each $A \in \Sigma$
and:
- $g$ is $\mu$-integrable.
So the difference:
- $\ds \map \nu A - \map {\nu_1} A$
is well-defined for each $A \in \Sigma$.
So, from Linear Combination of Signed Measures is Signed Measure, we have:
- $\nu_0$ is a signed measure.
Since:
- $\map {\nu_0} A \ge 0$ for each $A \in \Sigma$
we have that:
- $\nu_0$ is a measure
from Non-Negative Signed Measure is Measure.
We want to show that:
- $\map {\nu_0} A = 0$ for all $A \in \Sigma$.
Aiming for a contradiction, suppose, suppose that:
- $\map {\nu_0} A \ne 0$ for some $A \in \Sigma$.
Then from Measure is Monotone, we have:
- $\map {\nu_0} X \ne 0$
Since $\mu$ is a finite measure, we have:
- $\map \mu X < \infty$
So, we can pick $\epsilon > 0$ such that:
- $\map {\nu_0} X > \epsilon \map \mu X$
From Linear Combination of Signed Measures is Signed Measure, we have that:
- $\nu_2 = \nu_0 - \epsilon \mu$ is a signed measure.
Let $\struct {P, N}$ be the Hahn decomposition of $\nu_2$.
Since $P$ is a $\nu_2$-positive set, we have:
- $\map {\nu_2} {A \cap P} \ge 0$
for each $A \in \Sigma$, since $A \cap P \subseteq P$ from Intersection is Subset.
So:
- $\map {\nu_0} {A \cap P} \ge \epsilon \map \mu {A \cap P}$
Then for each $A \in \Sigma$, we have:
\(\ds \map \nu A\) | \(=\) | \(\ds \int_A g \rd \mu + \map {\nu_0} A\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int_A g \rd \mu + \map {\nu_0} {A \cap P}\) | Measure is Monotone | |||||||||||
\(\ds \) | \(\ge\) | \(\ds \int_A g \rd \mu + \epsilon \map \mu {A \cap P}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int_A g \rd \mu + \epsilon \int \chi_{A \cap P} \rd \mu\) | Integral of Characteristic Function: Corollary | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_A g \rd \mu + \epsilon \int \paren {\chi_A \cdot \chi_P} \rd \mu\) | Characteristic Function of Intersection | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_A g \rd \mu + \epsilon \int_A \chi_P \rd \mu\) | Definition of Integral of Integrable Function over Measurable Set | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_A \paren {g + \epsilon \chi_P} \rd \mu\) | Integral of Integrable Function is Additive |
So:
- $g + \epsilon \chi_P \in \FF$.
We show that $\map \mu P > 0$.
Aiming for a contradiction, suppose suppose that $\map \mu P = 0$.
Then since $\nu$ is absolutely continuous with respect to $\mu$, we have $\map \nu P = 0$.
Since:
- $\ds \int_P g \rd \mu \le \map \nu P$
we then have:
- $\ds \int_P g \rd \mu = 0$
and so:
- $\map {\nu_0} P = 0$
We then have:
\(\ds \map {\nu_0} X - \epsilon \map \mu X\) | \(=\) | \(\ds \map {\nu_0} {P \cup N} - \epsilon \map \mu {P \cup N}\) | Definition of Hahn Decomposition | |||||||||||
\(\ds \) | \(=\) | \(\ds \map {\nu_0} P + \map {\nu_0} N - \epsilon \map \mu P - \epsilon \map \mu N\) | since $\nu_0$ and $\mu$ are countably additive | |||||||||||
\(\ds \) | \(=\) | \(\ds \map {\nu_2} N\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds 0\) | Definition of Negative Set |
which contradicts:
- $\map {\nu_0} X > \epsilon \map \mu X$
so we have:
- $\map \mu P > 0$
From Integral of Characteristic Function: Corollary, we have:
- $\ds \int \chi_P \rd \mu = \map \mu P > 0$
So, from Integral of Positive Measurable Function is Positive Homogeneous, we then have:
- $\ds \int \epsilon \chi_P \rd \mu > 0$
Then:
\(\ds \int \paren {g + \epsilon \chi_P} \rd \mu\) | \(=\) | \(\ds \int g \rd \mu + \epsilon \int \chi_P \rd \mu\) | Integral of Integrable Function is Additive | |||||||||||
\(\ds \) | \(>\) | \(\ds \int g \rd \mu\) |
So:
- $\ds \int \paren {g + \epsilon \chi_P} \rd \mu > \sup \set {\int f \rd \mu : f \in \FF}$
contradicting the definition of supremum.
So:
- $\map {\nu_0} A = 0$ for all $A \in \Sigma$.
So we have:
- $\ds \map \nu A = \int_A g \rd \mu$
for each $A \in \Sigma$.
Since $g$ is $\mu$-integrable, we have that:
- there exists a real-valued $\mu$-integrable function $h : X \to \R$ such that $g = h$ $\mu$-almost everywhere
from Measurable Function is Integrable iff A.E. Equal to Real-Valued Integrable Function.
From A.E. Equal Positive Measurable Functions have Equal Integrals: Corollary 2, we have:
- $\ds \map \nu A = \int_A h \rd \mu$
for each $A \in \Sigma$.
So we are done in the case that $\mu$ and $\nu$ are finite.
Now suppose that $\mu$ and $\nu$ are $\sigma$-finite.
Lemma 2
There exists a pairwise disjoint sequence of $\Sigma$-measurable sets $\sequence {X_n}_{n \in \mathop \N}$ such that:
- $\ds X = \bigcup_{n \mathop = 1}^\infty X_n$
where:
- $\map \mu {X_n} < \infty$ and $\map \nu {X_n} < \infty$ for each $n$.
$\Box$
Let $\Sigma_n$ be the trace $\sigma$-algebra of $X_n$ in $\Sigma$.
From Trace Sigma-Algebra of Measurable Set, this consists precisely of the $\Sigma$-measurable subsets of $X_n$.
Let $\mu \restriction_{\Sigma_n}$ and $\nu \restriction_{\Sigma_n}$ be the restrictions of $\mu$ and $\nu$ to $\Sigma_n$.
We show that for each $n \in \N$:
- $\nu \restriction_{\Sigma_n}$ and $\mu \restriction_{\Sigma_n}$ are finite and $\nu \restriction_{\Sigma_n}$ is absolutely continuous with respect to $\mu \restriction_{\Sigma_n}$.
We have:
- $\map {\nu \restriction_{\Sigma_n} } {X_n} = \map \nu {X_n} < \infty$
and:
- $\map {\mu \restriction_{\Sigma_n} } {X_n} = \map \mu {X_n} < \infty$
so $\mu \restriction_{\Sigma_n}$ and $\nu \restriction_{\Sigma_n}$ are finite measures for each $n \in \N$.
Since $\nu$ is absolutely continuous with respect to $\mu$, we have:
- for all $A \in \Sigma$ with $\map \mu A = 0$, we have $\map \nu A = 0$.
So, in particular:
- for all $A \in \Sigma$ with $A \subseteq X_n$ and $\map \mu A = 0$, we have $\map \nu A = 0$.
That is:
- for all $A \in \Sigma_n$ with $\map {\mu \restriction_{\Sigma_n} } A = 0$, we have $\map {\nu \restriction_{\Sigma_n} } A = 0$.
Applying the finite case to each $\nu \restriction_{\Sigma_n}$:
- for each $n \in \N$ there exists a $\Sigma_n$-measurable function $g_n : X \to \hointr 0 \infty$ such that $\ds \map {\nu \restriction_{\Sigma_n} } A = \int_A g_n \rd \mu \restriction_{\Sigma_n}$ for each $A \in \Sigma_n$.
We also have that $g_n$ is $\Sigma$-measurable for each $n \in \N$.
Note that we have:
- $g_n^{-1} \sqbrk B \in \Sigma_n$ for each Borel set $B \subseteq \R$.
Since $\Sigma_n \subseteq \Sigma$, we have:
- $g_n^{-1} \sqbrk B \in \Sigma$ for each Borel set $B \subseteq \R$ for each $n \in \N$.
So:
- $g_n$ is $\Sigma$-measurable for each $n \in \N$.
From Integral with respect to Restriction of Measure to Trace Sigma-Algebra of Measurable Set:
- $\ds \int_A g_n \rd \mu \restriction_{\Sigma_n} = \int_A g_n^\ast \rd \mu$
for each $A \in \Sigma_n$, where we define the function $g_n^\ast : X \to \overline \R$ by:
- $\ds \map {g_n^\ast} x = \begin{cases}\map {g_n} x & x \in X_n \\ 0 & x \not \in X_n\end{cases}$
Then, for each $A \in \Sigma$, we have:
\(\ds \map \nu A\) | \(=\) | \(\ds \map \nu {A \cap X}\) | Intersection with Subset is Subset | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \nu {A \cap \paren {\bigcup_{n \mathop = 1}^\infty X_n} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \nu {\bigcup_{n \mathop = 1}^\infty \paren {A \cap X_n} }\) | Intersection Distributes over Union | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \map {\nu \restriction_{\Sigma_n} } {A \cap X_n}\) | Definition of Restriction of Measure to Trace Sigma-Algebra of Measurable Set | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \int_{A \cap X_n} g_n^\ast \rd \mu\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \int \chi_{A \cap X_n} \cdot g_n^\ast \rd \mu\) | Definition of Integral of Positive Measurable Function over Measurable Set | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \int \chi_A \cdot \chi_{X_n} \cdot g_n^\ast \rd \mu\) | Characteristic Function of Intersection | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \int_A \chi_{X_n} \cdot g_n^\ast \rd \mu\) | Definition of Integral of Positive Measurable Function over Measurable Set | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_A \paren {\sum_{n \mathop = 1}^\infty g_n^\ast} \rd \mu\) | Integral of Series of Positive Measurable Functions, $g_n^\ast$ is zero outside $X_n$ |
So the function $g : X \to \overline \R$ defined by:
- $\ds g = \sum_{n \mathop = 1}^\infty g_n^\ast$
satisfies the desired integral identity.
We can show that $g$ is in fact a function $X \to \hointr 0 \infty$, completing the existence proof.
Clearly $g \ge 0$, since $g_n^\ast \ge 0$ for each $n \in \N$.
Let $x \in X$.
Then:
- $x \in X_n$ for exactly one $n \in \N$
while:
- $\map {g_m^\ast} x = 0$ if $x \not \in X_m$.
So:
- $\map {g_n^\ast} x = 0$ for all but possibly one $n \in \N$.
Then:
- $\ds \sum_{n \mathop = 1}^\infty \paren {\map {g_n^\ast} x} = \map {g_{n_x}^\ast } x$
for some $n_x \in \N$ depending on $x$.
We have:
- $\map {g_{n_x} } x < \infty$
We therefore have:
- $\ds \sum_{n \mathop = 1}^\infty \map {g_n^\ast} x < \infty$
for all $x \in X$.
So:
- $\map g x < \infty$
for all $x \in X$.
So $g$ is a function $X \to \hointr 0 \infty$ as required.
$\Box$
Essential Uniqueness
Suppose that the positive $\Sigma$-measurable functions $g_1 : X \to \hointr 0 \infty$ and $g_2 : X \to \hointr 0 \infty$ are such that:
- $\ds \map \nu A = \int_A g_1 \rd \mu = \int_A g_2 \rd \mu$
for all $A \in \Sigma$.
From Lemma 2 there exists a sequence $\sequence {X_n}_{n \mathop \in \N}$ of $\Sigma$-measurable sets with:
- $\ds X = \bigcup_{n \mathop = 1}^\infty X_n$
and:
- $\map \mu {X_n} < \infty$ and $\map \nu {X_n} < \infty$ for each $n$.
Let:
- $A_1 = \set {x \in X : \map {g_1} x < \map {g_2} x}$
and:
- $A_2 = \set {x \in X : \map {g_1} x \ge \map {g_2} x}$
From Measurable Functions Determine Measurable Sets, $A_1$ and $A_2$ are $\Sigma$-measurable.
From Sigma-Algebra Closed under Countable Intersection:
- $A_1 \cap X_n$ and $A_2 \cap X_n$ are $\Sigma$-measurable for each $n$.
Then for each $n$, we have:
\(\ds \int_{A_1 \cap X_n} g_1 \rd \mu\) | \(=\) | \(\ds \int_{A_1 \cap X_n} g_2 \rd \mu\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \nu {A_1 \cap X_n}\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \map \nu {X_n}\) | Intersection is Subset, Measure is Monotone | |||||||||||
\(\ds \) | \(<\) | \(\ds \infty\) |
and:
\(\ds \int_{A_2 \cap X_n} g_1 \rd \mu\) | \(=\) | \(\ds \int_{A_2 \cap X_n} g_2 \rd \mu\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \nu {A_2 \cap X_n}\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \map \nu {X_n}\) | Intersection is Subset, Measure is Monotone | |||||||||||
\(\ds \) | \(<\) | \(\ds \infty\) |
Note that $A_1$ and $A_2$ are disjoint with:
- $X = A_1 \cup A_2$
and:
\(\ds A_1 \cap X\) | \(=\) | \(\ds A_1 \cap \bigcup_{n \mathop = 1}^\infty X_n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \bigcup_{n \mathop = 1}^\infty \paren {A_1 \cap X_n}\) | Union Distributes over Intersection |
similarly:
\(\ds A_2 \cap X\) | \(=\) | \(\ds A_2 \cap \bigcup_{n \mathop = 1}^\infty X_n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \bigcup_{n \mathop = 1}^\infty \paren {A_2 \cap X_n}\) | Union Distributes over Intersection |
Since the sequence $\sequence {X_n}_{n \mathop \in \N}$ is pairwise disjoint:
- the sequences $\sequence {A_1 \cap X_n}_{n \mathop \in \N}$ and $\sequence {A_2 \cap X_n}_{n \mathop \in \N}$ are pairwise disjoint.
We can then compute:
\(\ds \int \size {g_1 - g_2} \rd \mu\) | \(=\) | \(\ds \int_{A_1} \size {g_1 - g_2} \rd \mu + \int_{A_2} \size {g_1 - g_2} \rd \mu\) | Sum of Integrals on Complementary Sets | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \int_{A_1 \cap X_n} \size {g_1 - g_2} \rd \mu + \sum_{n \mathop = 1}^\infty \int_{A_2 \cap X_n} \size {g_1 - g_2} \rd \mu\) | Integral of Positive Measurable Function over Disjoint Union | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \int_{A_1 \cap X_n} \paren {g_2 - g_1} \rd \mu + \sum_{n \mathop = 1}^\infty \int_{A_2 \cap X_n} \paren {g_1 - g_2} \rd \mu\) | definition of $A_1$ and $A_2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \int \paren {g_2 - g_1} \cdot \chi_{A_1 \cap X_n} \rd \mu + \sum_{n \mathop = 1}^\infty \int \paren {g_1 - g_2} \cdot \chi_{A_1 \cap X_n} \rd \mu\) | Definition of Integral of Positive Measurable Function over Measurable Set | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \paren {\int \paren {g_2 \cdot \chi_{A_1 \cap X_n} } \rd \mu - \int \paren {g_1 \cdot \chi_{A_1 \cap X_n} } \rd \mu} + \sum_{n \mathop = 1}^\infty \paren {\int \paren {g_2 \cdot \chi_{A_2 \cap X_n} } \rd \mu - \int \paren {g_1 \cdot \chi_{A_2 \cap X_n} } \rd \mu}\) | Integral of Integrable Function is Additive: Corollary 2 | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \paren {\int_{A_1 \cap X_n} g_2 \rd \mu - \int_{A_1 \cap X_n} g_1 \rd \mu} + \sum_{n \mathop = 1}^\infty \paren {\int_{A_2 \cap X_n} g_1 \rd \mu - \int_{A_2 \cap X_n} g_2 \rd \mu}\) | Definition of Integral of Positive Measurable Function over Measurable Set | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty 0 + \sum_{n \mathop = 1}^\infty 0\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
From Measurable Function Zero A.E. iff Absolute Value has Zero Integral, we then have:
- $g_1 - g_2 = 0$ $\mu$-almost everywhere.
So:
- $g_1 = g_2$ $\mu$-almost everywhere
hence the claim.
$\blacksquare$
Source of Name
This entry was named for Johann Karl August Radon and Otton Marcin Nikodym.
Sources
- 2013: Donald L. Cohn: Measure Theory (2nd ed.) ... (previous) ... (next): $4.2$