Symbols:A
atto-
- $\mathrm a$
The Système Internationale d'Unités symbol for the metric scaling prefix atto, denoting $10^{\, -18 }$, is $\mathrm { a }$.
Its $\LaTeX$ code is \mathrm {a}
.
are
- $\mathrm a$
One are is equal to a square whose side measures $10$ metres.
\(\ds \) | \(\) | \(\ds 1\) | are | |||||||||||
\(\ds \) | \(=\) | \(\ds 100\) | square metres | |||||||||||
\(\ds \) | \(=\) | \(\ds 0 \cdotp 01\) | hectares | |||||||||||
\(\ds \) | \(\approx\) | \(\ds 119 \cdot 60\) | square yards |
The symbol for the are is $\mathrm a$.
The $\LaTeX$ code for \(\mathrm a\) is \mathrm a
.
Hexadecimal
- $\mathrm A$ or $\mathrm a$
The hexadecimal digit $10$.
Its $\LaTeX$ code is \mathrm A
or \mathrm a
.
Year
- $\mathrm a$
In some scientific contexts $\mathrm a$ (for annus, Latin for year) is used to indicate years.
The $\LaTeX$ code for \(\mathrm a\) is \mathrm a
.
Acceleration
- $\mathbf a$
The acceleration $\mathbf a$ of a body $M$ is defined as the first derivative of the velocity $\mathbf v$ of $M$ relative to a given point of reference with respect to time $t$:
- $\mathbf a = \dfrac {\d \mathbf v} {\d t}$
The usual symbol used to denote the acceleration of a body is $\mathbf a$.
The $\LaTeX$ code for \(\mathbf a\) is \mathbf a
.
Celestial Altitude
- $a$
Let $X$ be a point on the celestial sphere.
The (celestial) altitude of $X$ is defined as the angle subtended by the the arc of the vertical circle through $X$ between the celestial horizon and $X$ itself.
The $\LaTeX$ code for \(a\) is a
.
Azimuth (Astronomy)
- $A$
Let $X$ be a point on the celestial sphere.
The spherical angle between the principal vertical circle and the vertical circle on which $X$ lies is the azimuth of $X$.
The azimuth is usually measured in degrees, $0 \degrees$ to $180 \degrees$ either west or east, depending on whether $X$ lies on the eastern or western hemisphere of the celestial sphere.
The symbol for azimuth (in the context of astronomy) is $A$.
The $\LaTeX$ code for \(A\) is A
.
Ampere
- $\mathrm A$
The ampere is the SI base unit of electric current.
It is defined as being:
- The constant current which will produce a force of attraction whose value is $2 \times 10^{–7}$ newtons per metre of length between two straight, parallel conductors of infinite length and of infinitesimal circular cross-section placed one metre apart in a vacuum.
The symbol for the ampere is $\mathrm A$.
Its $\LaTeX$ code is \mathrm A
.
Angstrom
- $\mathring {\mathrm A}$
The angstrom is a metric unit of length.
\(\ds \) | \(\) | \(\ds 1\) | angstrom | |||||||||||
\(\ds \) | \(=\) | \(\ds 10^{-1}\) | nanometres | |||||||||||
\(\ds \) | \(=\) | \(\ds 10^{-4}\) | micrometres | |||||||||||
\(\ds \) | \(=\) | \(\ds 10^{-7}\) | millimetres | |||||||||||
\(\ds \) | \(=\) | \(\ds 10^{-8}\) | centimetres | |||||||||||
\(\ds \) | \(=\) | \(\ds 10^{-10}\) | metres |
The symbol for the angstrom is $\mathring {\mathrm A}$.
The $\LaTeX$ code for \(\mathring {\mathrm A}\) is \mathring {\mathrm A}
.
Alternating Group
- $A_n$
Let $S_n$ denote the symmetric group on $n$ letters.
For any $\pi \in S_n$, let $\map \sgn \pi$ be the sign of $\pi$.
The kernel of the mapping $\sgn: S_n \to C_2$ is called the alternating group on $n$ letters and denoted $A_n$.
The $\LaTeX$ code for \(A_n\) is A_n
.
Airy Function of the First Kind
- $\map \Ai x$
An Airy function of the first kind is an Airy function which is of the form:
- $\ds \map {\Ai} x = \dfrac 1 \pi \int_0^\infty \map \cos {\dfrac {t^3} 3 + x t} \rd t$
The $\LaTeX$ code for \(\map \Ai x\) is \map \Ai x
.
Automorphism Group
- $\Aut S$
Let $\struct {S, *}$ be an algebraic structure.
Let $\mathbb S$ be the set of automorphisms of $S$.
Then the algebraic structure $\struct {\mathbb S, \circ}$, where $\circ$ denotes composition of mappings, is called the automorphism group of $S$.
The structure $\struct {S, *}$ is usually a group. However, this is not necessary for this definition to be valid.
The automorphism group of an algebraic structure $S$ is denoted on $\mathsf{Pr} \infty \mathsf{fWiki}$ as $\Aut S$.
The $\LaTeX$ code for \(\Aut S\) is \Aut S
.
arc-
Arccosine
arccos
- $\arccos$
The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the arccosine function is $\arccos$.
The $\LaTeX$ code for \(\arccos\) is \arccos
.
acos
- $\operatorname {acos}$
A variant symbol used to denote the arccosine function is $\operatorname {acos}$.
The $\LaTeX$ code for \(\operatorname {acos}\) is \operatorname {acos}
.
Arccosecant
arccsc
- $\arccsc$
The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the arccosecant function is $\arccsc$.
The $\LaTeX$ code for \(\arccsc\) is \arccsc
.
arccosec
- $\operatorname {arccosec}$
A variant symbol used to denote the arccosecant function is $\operatorname {arccosec}$.
The $\LaTeX$ code for \(\operatorname {arccosec}\) is \operatorname {arccosec}
.
acosec
- $\operatorname {acosec}$
A variant symbol used to denote the arccosecant function is $\operatorname {acosec}$.
The $\LaTeX$ code for \(\operatorname {acosec}\) is \operatorname {acosec}
.
acsc
- $\operatorname {acsc}$
A variant symbol used to denote the arccosecant function is $\operatorname {acsc}$.
The $\LaTeX$ code for \(\operatorname {acsc}\) is \operatorname {acsc}
.
Arccotangent
arccot
- $\arccot$
The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the arccotangent function is $\arccot$.
The $\LaTeX$ code for \(\arccot\) is \arccot
.
acot
- $\operatorname {acot}$
A variant symbol used to denote the arccotangent function is $\operatorname {acot}$.
Its $\LaTeX$ code is \operatorname {acot}
.
actn
- $\operatorname {actn}$
A variant symbol used to denote the arccotangent function is $\operatorname {actn}$.
Its $\LaTeX$ code is \operatorname {actn}
.
Area Hyperbolic Cosine
arcosh
- $\arcosh$
The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the area hyperbolic cosine function is $\arcosh$.
The $\LaTeX$ code for \(\arcosh\) is \arcosh
.
acosh
- $\operatorname {acosh}$
A variant symbol used to denote the area hyperbolic cosine function is $\operatorname {acosh}$.
Its $\LaTeX$ code is \operatorname {acosh}
.
Area Hyperbolic Cosecant
arcsch
- $\arcsch$
The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the area hyperbolic cosecant function is $\arcsch$.
The $\LaTeX$ code for \(\arcsch\) is \arcsch
.
acsch
- $\operatorname {acsch}$
A variant symbol used to denote the area hyperbolic cosecant function is $\operatorname {acsch}$.
The $\LaTeX$ code for \(\operatorname {acsch}\) is \operatorname {acsch}
.
acosech
- $\operatorname {acosech}$
A variant symbol used to denote the area hyperbolic cosecant function is $\operatorname {acosech}$.
The $\LaTeX$ code for \(\operatorname {acosech}\) is \operatorname {acosech}
.
Area Hyperbolic Cotangent
arcoth
- $\arcoth$
The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the area hyperbolic cotangent function is $\arcoth$.
The $\LaTeX$ code for \(\arcoth\) is \arcoth
.
acoth
- $\operatorname {acoth}$
A variant symbol used to denote the area hyperbolic cotangent function is $\operatorname {acoth}$.
The $\LaTeX$ code for \(\operatorname {acoth}\) is \operatorname {acoth}
.
actnh
- $\operatorname {actnh}$
A variant symbol used to denote the area hyperbolic cotangent function is $\operatorname {actnh}$.
The $\LaTeX$ code for \(\operatorname {actnh}\) is \operatorname {actnh}
.
adj
- $\adj {\mathbf A}$
Let $\mathbf A = \sqbrk a_n$ be a square matrix of order $n$.
Let $\mathbf C$ be its cofactor matrix.
The adjugate matrix of $\mathbf A$ is the transpose of $\mathbf C$:
- $\adj {\mathbf A} = \mathbf C^\intercal$
The $\LaTeX$ code for \(\adj {\mathbf A}\) is \adj {\mathbf A}
.
aln
- $\operatorname {aln}$
The antilogarithm of the natural logarithm.
Its $\LaTeX$ code is \operatorname {aln}
.
alog
- $\operatorname {alog}_b$
Let $x \in \R_{>0}$ be a strictly positive real number.
Let $b \in \R_{>1}$ be a real number which is greater than $1$.
Let $y = \log_b x$ be the logarithm of $x$ base $b$.
Then $x$ is the antilogarithm of $y$ base $b$.
The $\LaTeX$ code for \(\operatorname {alog}_b\) is \operatorname {alog}_b
.
Amplitude of Incomplete Elliptic Integral of the First Kind
am
- $\am$
The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the amplitude of the incomplete elliptic integral of the first kind is $\am$.
The $\LaTeX$ code for \(\am\) is \am
.
amp
- $\operatorname {amp} $
A variant symbol used to denote the amplitude of the incomplete elliptic integral of the first kind is $\operatorname {amp}$.
The $\LaTeX$ code for \(\operatorname {amp}\) is \operatorname {amp}
.
Ann
- $\operatorname {Ann}$
Let $B: R \times \Z$ be a bilinear mapping defined as:
- $B: R \times \Z: \tuple {r, n} \mapsto n \cdot r$
where $n \cdot r$ defined as an integral multiple of $r$:
- $n \cdot r = r + r + \cdots \paren n \cdots r$
Note the change of order of $r$ and $n$:
- $\map B {r, n} = n \cdot r$
Let $D \subseteq R$ be a subring of $R$.
Then the annihilator of $D$ is defined as:
- $\map {\mathrm {Ann} } D = \set {n \in \Z: \forall d \in D: n \cdot d = 0_R}$
or, when $D = R$:
- $\map {\mathrm {Ann} } R = \set {n \in \Z: \forall r \in R: n \cdot r = 0_R}$
Its $\LaTeX$ code is \operatorname {Ann}
.
arg
- $\arg$
The argument of a complex number.
Its $\LaTeX$ code is \arg
.
Arg
- $\operatorname {Arg}$
The principal argument of a complex number.
Its $\LaTeX$ code is \Arg
.
Arcsine
arcsin
- $\arcsin$
The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the arcsine function is $\arcsin$.
The $\LaTeX$ code for \(\arcsin\) is \arcsin
.
asin
- $\operatorname {asin}$
A variant symbol used to denote the arcsine function is $\operatorname {asin}$.
The $\LaTeX$ code for \(\operatorname {asin}\) is \operatorname {asin}
.
Arcsecant
arcsec
- $\arcsec$
The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the arcsecant function is $\arcsec$.
The $\LaTeX$ code for \(\arcsec\) is \arcsec
.
asec
- $\operatorname {asec}$
A variant symbol used to denote the arcsecant function is $\operatorname {asec}$.
The $\LaTeX$ code for \(\operatorname {asec}\) is \operatorname {asec}
.
Arctangent
arctan
- $\arctan$
The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the arctangent function is $\arctan$.
The $\LaTeX$ code for \(\arctan\) is \arctan
.
atan
- $\operatorname {atan}$
A variant symbol used to denote the arctangent function is $\operatorname {atan}$.
The $\LaTeX$ code for \(\operatorname {atan}\) is \operatorname {atan}
.
atn
- $\operatorname {atn}$
A variant symbol used to denote the arctangent function is $\operatorname {atn}$.
The $\LaTeX$ code for \(\operatorname {atn}\) is \operatorname {atn}
.
Area Hyperbolic Sine
arsinh
- $\arsinh$
The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the area hyperbolic sine function is $\arsinh$.
The $\LaTeX$ code for \(\arsinh\) is \arsinh
.
asinh
- $\operatorname {asinh}$
A variant symbol used to denote the area hyperbolic sine function is $\operatorname {asinh}$.
The $\LaTeX$ code for \(\operatorname {asinh}\) is \operatorname {asinh}
.
Area Hyperbolic Secant
arsech
- $\arsech$
The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the area hyperbolic secant function is $\arsech$.
The $\LaTeX$ code for \(\arsech\) is \arsech
.
asech
- $\operatorname {asech}$
A variant symbol used to denote the area hyperbolic secant function is $\operatorname {asech}$.
The $\LaTeX$ code for \(\operatorname {asech}\) is \operatorname {asech}
.
Area Hyperbolic Tangent
artanh
- $\artanh$
The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the area hyperbolic tangent function is $\artanh$.
The $\LaTeX$ code for \(\artanh\) is \artanh
.
atanh
- $\operatorname {atanh}$
A variant symbol used to denote the area hyperbolic tangent function is $\operatorname {atanh}$.
The $\LaTeX$ code for \(\operatorname {atanh}\) is \operatorname {atanh}
.
Standard Atmosphere
atm
- $\mathrm {atm}$
The usual symbol used on $\mathsf{Pr} \infty \mathsf{fWiki}$ to denote the standard atmosphere is $\mathrm {atm}$.
The $\LaTeX$ code for \(\mathrm {atm}\) is \mathrm {atm}
.
Int atm
- $\mathrm {Int \, atm}$
A variant symbol used to denote the standard atmosphere is $\mathrm {Int \, atm}$.
This reflects its variant name of international atmosphere.
The $\LaTeX$ code for \(\mathrm {Int \, atm}\) is \mathrm {Int \, atm}
.
Abampere
- $\mathrm {abA}$
The symbol for the abampere is $\mathrm {abA}$.
Its $\LaTeX$ code is \mathrm {abA}
.
Abcoulomb
- $\mathrm {abC}$
The symbol for the abcoulomb is $\mathrm {abC}$.
Its $\LaTeX$ code is \mathrm {abC}
.
Abvolt
- $\mathrm {abV}$
The symbol for the abvolt is $\mathrm {abV}$.
Its $\LaTeX$ code is \mathrm {abV}
.
Abohm
- $\mathrm {ab \Omega}$
The symbol for the abohm is $\mathrm {ab \Omega}$, where $\Omega$ is the Greek letter Omega.
Its $\LaTeX$ code is \mathrm {ab \Omega}
.
Abhenry
- $\mathrm {abH}$
The symbol for the abhenry is $\mathrm {abH}$.
Its $\LaTeX$ code is \mathrm {abH}
.
Abfarad
- $\mathrm {abF}$
The symbol for the abfarad is $\mathrm {abF}$.
Its $\LaTeX$ code is \mathrm {abF}
.
Atomic Mass Unit
- $\mathrm {amu}$ or $\mathrm {AMU}$
The symbol for the atomic mass unit is $\mathrm {amu}$ or $\mathrm {AMU}$.
The $\LaTeX$ code for \(\mathrm {amu}\) is \mathrm {amu}
.
The $\LaTeX$ code for \(\mathrm {AMU}\) is \mathrm {AMU}
.
Bohr Radius
- $a_0$
The symbol for the Bohr radius is $a_0$.
The $\LaTeX$ code for \(a_0\) is a_0
.
Astronomical Unit
- $\mathrm {AU}$ or $\mathrm {au}$
The symbol for the astronomical unit is $\mathrm {AU}$ or $\mathrm {au}$.
The $\LaTeX$ code for \(\mathrm {AU}\) is \mathrm {AU}
.
The $\LaTeX$ code for \(\mathrm {au}\) is \mathrm {au}
.