Book:Books/Geometry
Jump to navigation
Jump to search
The following books covered on $\mathsf{Pr} \infty \mathsf{fWiki}$ discuss geometry in its various forms.
For a comprehensive list of books referenced on $\mathsf{Pr} \infty \mathsf{fWiki}$ (and more), see Books.
Books
General
- 1684: David Gregory: Exercitatio Geometria de Dimensione Curvarum
- 1720: Colino Mac Laurin: Geometria Organica
- 1803: L.N.M. Carnot: Géométrie de Position
- 1827: August Ferdinand Möbius: Der Barycentrische Calcul
- 1967: H.S.M. Coxeter and S.L. Greitzer: Geometry Revisited
- 1981: Ivan Niven: Maxima and Minima without Calculus
Euclidean Geometry
- 1509: Fra Luca Pacioli: De Divina Proportione
- 1525: Albrecht Dürer: Underweysung der Messung mit dem Zirckel und Richtscheyt ("Instructions for Measuring with Compass and Ruler")
- 1611: Johannes Kepler: De Nive Sexangula
- 1635: Bonaventura Cavalieri: Geometria Indivisibilibus Continuorum Nova Quadam Ratione Promota
- 1659: Vincenzo Viviani: De Maximis et Minimis
- 1672: Georg Mohr: Euclides Danicus
- 1733: Giovanni Saccheri: Euclides ab Omni Naevo Vindicatus ("Euclid Cleared from Every Stain")
- 1794: A.M. Legendre: Éléments de Géométrie
- 1795: John Playfair: Elements of Geometry
- 1797: Lorenzo Mascheroni: Geometria del Compasso
- 1877: A.B. Kempe: How to Draw a Straight Line
- 1899: David Hilbert: Grundlagen der Geometrie
- 1902: David Hilbert: The Foundations of Geometry (translated by E.J. Townsend)
- 1961: E.H. Lockwood: A Book of Curves
- 1968: M.N. Aref and William Wernick: Problems & Solutions in Euclidean Geometry
- 1972: André VandenBroeck: Philosophical Geometry
- 1990: Richard S. Millman and George D. Parker: Geometry: A Metric Approach with Models
- 1998: Michèle Audin: Géométrie
- 2003: Michèle Audin: Geometry
- 2006: Michèle Audin: Géométrie (2nd ed.)
Trigonometry
- 1342: Levi ben Gershon: De Sinibus, Chordiis et Arcubus ("On Sines, Chords and Arcs")
- 1464: Ioannis de Regio Monte: De Triangulis Omnimodus
- 1579: Franciscus Vieta: Canon Mathematicus seu ad Triangula ("The Mathematical Canon Applied to Triangles")
- 1596: Georg Joachim Rhaeticus: Opus Palatinum de Triangulis
Analytic Geometry
- 1636: Pierre de Fermat: Methodus ad Disquirendam Maximam et Minimam et de Tangentibus Linearum Curvarum ("Method for determining Maxima and Minima and Tangents to Curved Lines")
- 1637: Pierre de Fermat: Introduction to Plane and Solid Loci
- 1679: Pierre de Fermat: Ad Locos Planos et Solidos Isagoge ("Introduction to Plane and Solid Loci")
- 1637: René Descartes: La Géométrie
- 1704: Isaac Newton: Enumeratio Linearum Tertii Ordinis
- 1707: Guillaume de l'Hôpital: Traité Analytique des Sections Coniques
Solid Geometry
- 1934: D.M.Y. Sommerville: Analytical Geometry of Three Dimensions
- 1938: Robert J.T. Bell: Coordinate Solid Geometry (reprint of chapters I to IX of An Elementary Treatise on Coordinate Geometry of Three Dimensions from 1911)
Projective Geometry
- 1639: Blaise Pascal: Essay pour les Coniques
- 1715: Brook Taylor: Linear Perspective
- 1822: Jean-Victor Poncelet: Traité des propriétés projectives des figures
- 1832: Jakob Steiner: Systematische Entwicklung der Abhängigkeit geometrischer Gestalten voneinander
- 1847: Karl Georg Christian von Staudt: Geometrie der Lage
- 1910: Oswald Veblen and John Wesley Young: Projective Geometry: Volume $\text { 1 }$
- 1918: Oswald Veblen: Projective Geometry: Volume $\text { 2 }$
- 1946: E.A. Maxwell: The Methods of Plane Projective Geometry based on the use of General Homogeneous Coordinates
Algebraic Geometry
- 1750: Gabriel Cramer: Introduction à l'analyse des lignes courbes algébriques
- 1941: S.L. Green: Algebraic Solid Geometry
- 1952: J.G. Semple and G.T. Kneebone: Algebraic Projective Geometry
- 1977: Robin Hartshorne: Algebraic Geometry
Differential Geometry
- 1927: C.E. Weatherburn: Differential Geometry of Three Dimensions: Volume $\text { I }$
- 1959: T.J. Willmore: An Introduction to Differential Geometry
- 2001: Andrew Pressley: Elementary Differential Geometry
- 2013: Gerd Rudolph and Matthias Schmidt: Differential Geometry and Mathematical Physics
- 2018: John M. Lee: Introduction to Riemannian Manifolds (2nd ed.)