Help:LaTeX Editing

From ProofWiki
Jump to: navigation, search
This page is about technical instructions. For stylistic remarks on $\LaTeX$ editing, see Help:Editing/House Style/Mathematical Symbols

$\LaTeX$ Editing

In general, contributors are assumed to be up to speed with some form of $\LaTeX$; a web search should be sufficient to find ample reference on how to get started with it, should you still need to.

The "External references" section below may also be consulted.


The $\LaTeX$ interpreter used on this site is brought to you by MathJax.

This produces an experience different from that produced by the MediaWiki interpreter which is (at time of writing) the one used by Wikipedia and other places.

It also has a subtly different syntax in places. Specific instances will be detailed where relevant.


$\LaTeX$ delimiters

To display an equation in line with some text, the equation should be enclosed in single dollar signs: $ ... $

Note that \( ... \) also works, but takes more effort to type and so is less recommended.

There may (but we hope not) still be some pages with <math> ... </math> in them. This is a holdover from when MediaWiki was the interpreter used for $\LaTeX$ commands. It still works in MathJax after a fashion but on transcluded pages, such enclosed $\LaTeX$ will not be converted to mathematical symbols.

If you see any, then feel free to change them to $ signs, as they should not be there.


No longer supported

The following $\LaTeX$ commands are not supported in MathJax, but may still be present in some pages. When found they need to be replaced.

For $\lor$: \or to be replaced by \lor
For $\land$: \and to be replaced by \land
For $\R$: \reals to be replaced by \R
For $\varnothing$: \O to be replaced by \varnothing
For $\exists$: \exist to be replaced by \exists


For producing fixed width text in math mode: \texttt needs to be replaced by \mathtt.

If you find any more examples, add them here.


New commands

New commands can be requested and discussed at Symbols:LaTeX Commands/ProofWiki Specific, transcluded here:

\(\arccot\) $\quad:\quad$\arccot $\qquad$Arccotangent
\(\arccsc\) $\quad:\quad$\arccsc $\qquad$Arccosecant
\(\arcsec\) $\quad:\quad$\arcsec $\qquad$Arcsecant
\(\Area\) $\quad:\quad$\Area $\qquad$Area of Plane Figure
\(\Aut {S}\) $\quad:\quad$\Aut {S} $\qquad$Group of Automorphisms
\(\bsDelta\) $\quad:\quad$\bsDelta $\qquad$a vector '$\Delta$'
\(\bsone\) $\quad:\quad$\bsone $\qquad$vector of ones
\(\bst\) $\quad:\quad$\bst $\qquad$a vector 't'
\(\bsv\) $\quad:\quad$\bsv $\qquad$a vector 'v'
\(\bsw\) $\quad:\quad$\bsw $\qquad$a vector 'w'
\(\bsx\) $\quad:\quad$\bsx $\qquad$a vector 'x'
\(\bsy\) $\quad:\quad$\bsy $\qquad$a vector 'y'
\(\bsz\) $\quad:\quad$\bsz $\qquad$a vector 'z'
\(\bszero\) $\quad:\quad$\bszero $\qquad$vector of zeros
\(\Card \paren {S}\) $\quad:\quad$\Card \paren {S} $\qquad$Cardinality
\(\card {S}\) $\quad:\quad$\card {S} $\qquad$Cardinality
\(\Cdm {f}\) $\quad:\quad$\Cdm {f} $\qquad$Codomain of Mapping
\(\ceiling {11.98}\) $\quad:\quad$\ceiling {11.98} $\qquad$Ceiling Function
\(30 \cels\) $\quad:\quad$30 \cels $\qquad$Degrees Celsius
\(\closedint {a} {b}\) $\quad:\quad$\closedint {a} {b} $\qquad$Closed Interval
\(\cmod {z^2}\) $\quad:\quad$\cmod {z^2} $\qquad$Complex Modulus
\(\conjclass {x}\) $\quad:\quad$\conjclass {x} $\qquad$Conjugacy Class
\(\csch\) $\quad:\quad$\csch $\qquad$Hyperbolic Cosecant
\(\dfrac {\d x} {\d y}\) $\quad:\quad$\dfrac {\d x} {\d y} $\qquad$Roman $\d$ for Derivatives
\(30 \degrees\) $\quad:\quad$30 \degrees $\qquad$Degrees of Arc
\(\Dic n\) $\quad:\quad$\Dic n $\qquad$Dicyclic Group
\(a \divides b\) $\quad:\quad$a \divides b $\qquad$Divisibility
\(\Dom {f}\) $\quad:\quad$\Dom {f} $\qquad$Domain of Mapping
\(\E\) $\quad:\quad$\E $\qquad$Euler's number
\(\empty\) $\quad:\quad$\empty $\qquad$Empty Set
\(\eqclass {x} {\mathcal R}\) $\quad:\quad$\eqclass {x} {\mathcal R} $\qquad$Equivalence Class
\(\expect {X}\) $\quad:\quad$\expect {X} $\qquad$Expectation
\(\F\) $\quad:\quad$\F\FF $\qquad$Galois Field
\(30 \fahr\) $\quad:\quad$30 \fahr $\qquad$Degrees Fahrenheit
\(\family {S_i}\) $\quad:\quad$\family {S_i} $\qquad$Indexed Family
\(\Fix {\pi}\) $\quad:\quad$\Fix {\pi} $\qquad$Set of Fixed Elements
\(\floor {11.98}\) $\quad:\quad$\floor {11.98} $\qquad$Floor Function
\(\fractpart {x}\) $\quad:\quad$\fractpart {x} $\qquad$Fractional Part
\(\gen {S}\) $\quad:\quad$\gen {S} $\qquad$Generator
\(\GL {n, \R}\) $\quad:\quad$\GL {n, \R} $\qquad$General Linear Group
\(\HH\) $\quad:\quad$\HH $\qquad$Hilbert Space
\(\hointl {a} {b}\) $\quad:\quad$\hointl {a} {b} $\qquad$Left Half-Open Interval
\(\hointr {a} {b}\) $\quad:\quad$\hointr {a} {b} $\qquad$Right Half-Open Interval
\(\Im \paren z\) $\quad:\quad$\Im \paren z $\qquad$Imaginary Part
\(\Img {f}\) $\quad:\quad$\Img {f} $\qquad$Image of Mapping
\(\index {G} {H}\) $\quad:\quad$\index {G} {H} $\qquad$Index of Subgroup
\(\Inn {S}\) $\quad:\quad$\Inn {S} $\qquad$Group of Inner Automorphisms
\(\laptrans {f}\) $\quad:\quad$\laptrans {f} $\qquad$Laplace Transform
\(\lcm \set {x, y, z}\) $\quad:\quad$\lcm \set {x, y, z} $\qquad$Lowest Common Multiple
\(\leadstoandfrom\) $\quad:\quad$\leadstoandfrom
\(\len {AB}\) $\quad:\quad$\len {AB} $\qquad$Length Function: various
\(\Ln\) $\quad:\quad$\Ln $\qquad$Principal Branch of Complex Natural Logarithm
\(\Log\) $\quad:\quad$\Log $\qquad$Principal Branch of Complex Natural Logarithm
\(\map {f} {x}\) $\quad:\quad$\map {f} {x} $\qquad$Mapping or Function
\(\norm {z^2}\) $\quad:\quad$\norm {z^2} $\qquad$Norm
\(\O\) $\quad:\quad$\O $\qquad$Empty Set
\(\On\) $\quad:\quad$\On $\qquad$Ordinal Class
\(\openint {a} {b}\) $\quad:\quad$\openint {a} {b} $\qquad$Open Interval
\(\Orb S\) $\quad:\quad$\Orb S $\qquad$Orbit
\(\order {G}\) $\quad:\quad$\order {G} $\qquad$Order of Structure, and so on
\(\paren {a + b + c}\) $\quad:\quad$\paren {a + b + c} $\qquad$Parenthesis
\(\polar {r, \theta}\) $\quad:\quad$\polar {r, \theta} $\qquad$Polar Form of Complex Number
\(\powerset {S}\) $\quad:\quad$\powerset {S} $\qquad$Power Set
\(\Preimg {f}\) $\quad:\quad$\Preimg {f} $\qquad$Preimage of Mapping
\(\pr_j \paren {F}\) $\quad:\quad$\pr_j \paren {F} $\qquad$Projection
\(\displaystyle \int f \paren x \rd x\) $\quad:\quad$\displaystyle \int f \paren x \rd x $\qquad$Roman $\d$ for use in Integrals
\(\rD\) $\quad:\quad$\rD $\qquad$Differential Operator
\(y \rdelta x\) $\quad:\quad$y \rdelta x $\qquad$$\delta$ operator for use in sums
\(\Re \paren z\) $\quad:\quad$\Re \paren z $\qquad$Real Part
\(\relcomp {S} {A}\) $\quad:\quad$\relcomp {S} {A} $\qquad$Relative Complement
\(\rem\) $\quad:\quad$\rem $\qquad$Remainder
\(\Res {f} {z_0}\) $\quad:\quad$\Res {f} {z_0} $\qquad$Residue
\(\Rng {f}\) $\quad:\quad$\Rng {f} $\qquad$Range of Mapping
\(\sech\) $\quad:\quad$\sech $\qquad$Hyperbolic Secant
\(\sequence {a_n}\) $\quad:\quad$\sequence {a_n} $\qquad$Sequence
\(\set {a, b, c}\) $\quad:\quad$\set {a, b, c} $\qquad$Conventional set notation
\(\size {x}\) $\quad:\quad$\size {x} $\qquad$Absolute Value, and so on
\(\Si\) $\quad:\quad$\Si $\qquad$Sine Integral Function
\(\SL {n, \R}\) $\quad:\quad$\SL {n, \R} $\qquad$Special Linear Group
\(\sqbrk {a} \) $\quad:\quad$\sqbrk {a}
\(\Stab x\) $\quad:\quad$\Stab x $\qquad$Stabilizer
\(\struct {G, \circ}\) $\quad:\quad$\struct {G, \circ} $\qquad$Algebraic Structure
\(\Syl {p} {N}\) $\quad:\quad$\Syl {p} {N} $\qquad$Sylow $p$-Subgroup
\(\tr\) $\quad:\quad$\tr $\qquad$Trace
\(\tuple {a, b, c}\) $\quad:\quad$\tuple {a, b, c} $\qquad$Ordered Tuple
\(\var {X}\) $\quad:\quad$\var {X} $\qquad$Variance


Aligned Equations

To include aligned equations, a set of templates has been written: begin-eqn, eqn and end-eqn.

For more explanation, see Template:eqn.


Known issues

See Problem with Eqn template.


Specific Topics

Commutative diagrams

See Help:Commutative Diagrams


External references and manuals

It may not be exactly the same version of $\LaTeX$, but I always find this page helpful as a first, quick overview:

This is also a good reference page, pertaining to MediaWiki $\LaTeX$:

but be aware that not all commands are supported.

This is a link of all the currently supported commands available: