Book:Books/Analysis
Jump to navigation
Jump to search
The following books covered on $\mathsf{Pr} \infty \mathsf{fWiki}$ discuss analysis in its various forms.
For a comprehensive list of books referenced on $\mathsf{Pr} \infty \mathsf{fWiki}$ (and more), see Books.
Books
- 1591: Franciscus Vieta: In Artem Analyticam Isagoge ("Introduction to the Analytical Arts")
- 1711: Isaac Newton: Analysis per Quantitatem Series
- 1730: Jacobo Stirling: Methodus Differentialis
- 1748: Maria Gaëtana Agnesi: Instituzioni Analitiche ad uso della Gioventù Italiana
- 1748: Leonhard Paul Euler: Introductio in Analysin Infinitorum
- 1808: C. Kramp: Élémens d'arithmétique universelle
- 1821: Augustin Louis Cauchy: Cours d'analyse
- 1824: Niels Henrik Abel: Mémoire sur les équations algébriques ou on démontre l'impossibilité de la résolution de l'équation générale du cinquième degré
- 1882-87: Camille Jordan: Cours d'Analyse de l'École Polytechnique
- 1902: Édouard Goursat: Cours d'Analyse Mathématique: Volume $\text { 1 }$
- 1904: Édouard Goursat: A Course in Mathematical Analysis: Volume $\text { 1 }$ (translated by Earle Raymond Hedrick) (translation of Cours d'Analyse Mathématique, Volume 1)
- 1910 -- 1913: Édouard Goursat: Cours d'Analyse Mathématique: Volume $\text { 1 }$ (2nd ed.)
- 1924: Édouard Goursat: Cours d'Analyse Mathématique: Volume $\text { 1 }$ (4th ed.)
- 1905: Édouard Goursat: Cours d'Analyse Mathématique: Volume $\text { 2 }$
- 1910 -- 1913: Édouard Goursat: Cours d'Analyse Mathématique: Volume $\text { 2 }$ (2nd ed.)
- 1916: Édouard Goursat: A Course in Mathematical Analysis: Volume $\text { 2 (Part 1) }$ (translated by Earle Raymond Hedrick and Otto Dunkel) (Part 1) (translation of Cours d'Analyse Mathématique, Volume 2)
- 1917: Édouard Goursat: A Course in Mathematical Analysis: Volume $\text { 2 (Part 2) }$ (translated by Earle Raymond Hedrick and Otto Dunkel) (Part 2) (translation of Cours d'Analyse Mathématique, Volume 2)
- 1925: Édouard Goursat: Cours d'Analyse Mathématique: Volume $\text { 2 }$ (4th ed.)
- 1910 -- 1913: Édouard Goursat: Cours d'Analyse Mathématique: Volume $\text { 2 }$ (2nd ed.)
- 1925: George Pólya and Gábor Szegő: Problems and Theorems in Analysis I (translated by Dorothée Aeppli)
- 1925: George Pólya and Gábor Szegő: Problems and Theorems in Analysis II (translated by C.E. Billigheimer)
- 1930: Edmund Landau: Grundlagen der Analysis
- 1951: Edmund Landau: Foundations of Analysis (translated by F. Steinhardt)
- 1938: C.V. Durell and Alan Robson: Shorter Advanced Trigonometry
- 1942: James M. Hyslop: Infinite Series
- 1960: J. Dieudonné: Foundations of Modern Analysis
- 1965: Edwin Hewitt and Karl Stromberg: Real and Abstract Analysis
- 1966: Walter Rudin: Real and Complex Analysis
- 1967: Errett Bishop: Foundations of Constructive Analysis
- 1970: J.C. Burkill and H. Burkill: A Second Course in Mathematical Analysis
- 1970: Avner Friedman: Foundations of Modern Analysis
- 1970: R. Tyrell Rockafellar: Convex Analysis
- 1973: L.V. Ahlfors: Conformal Invariants: Topics in Geometric Function Theory
- 1990: George Gasper and Mizan Rahman: Basic Hypergeometric Series
- 1993: Serge Lang: Real and Functional Analysis (3nd ed.)
- 1994: Brian S. Thomson: Symmetric Properties of Real Functions
- 1996: Eric Schechter: Handbook of Analysis and its Foundations
- 1997: Fernando Q. Gouvea: p-adic Numbers: An Introduction
- 1998: Ram Prakash Kanwal: Generalized Functions: Theory and Technique (2nd ed.)
- 2003: Charles C. Pugh: Real Mathematical Analysis (2nd ed.)
- 2005: G. Auliac and J.-Y. Caby: Mathématiques, Topologie et Analyse
- 2007: Svetlana Katok: p-adic Analysis Compared with Real
- 2011: Robert G. Bartle and Donald R. Sherbert: Introduction to Real Analysis (4th ed.)
- 2011: Graham R. Allan and H. Garth Dales: Introduction to Banach Spaces and Algebras
- 2014: Kenneth Falconer: Fractal Geometry: Mathematical Foundations and Applications (3rd ed.)
Logarithms
Analytical Geometry
- 1828: Julius Plücker: Analytisch-Geometrische Entwicklungen: Volume $\text { 1 }$ ("Developments in Analytic Geometry")
- 1831: Julius Plücker: Analytisch-Geometrische Entwicklungen: Volume $\text { 2 }$ ("Developments in Analytic Geometry")
Real Analysis
- 1958: J.A. Green: Sequences and Series
- 1963: H.L. Royden: Real Analysis
- 1968: H.L. Royden: Real Analysis (2nd ed.)
- 1988: H.L. Royden: Real Analysis (3rd ed.)
- 2010: H.L. Royden and P.M. Fitzpatrick: Real Analysis (4th ed.)
- 1968: A.N. Kolmogorov and S.V. Fomin: Introductory Real Analysis (translated by Richard A. Silverman)
- 1969: R.P. Boas: A Primer of Real Functions
- 1973: C.R.J. Clapham: Introduction to Mathematical Analysis
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach
- 1981: Charalambos D. Aliprantis and Owen Burkinshaw: Principles of Real Analysis
- 1981: Karl R. Stromberg: An Introduction to Classical Real Analysis
- 1989: R.M. Dudley: Real Analysis and Probability
- 1989: Elon Lages Lima: Análise Real 1
- 1981: Charalambos D. Aliprantis and Owen Burkinshaw: Principles of Real Analysis (3rd ed.)
- 2000: N.L. Carothers: Real Analysis
- 2000: Ebbe Thue Poulsen and Klaus Thomsen: Indledning til Matematisk Analyse 1a
- 2005: Elias M. Stein and Rami Shakarchi: Real Analysis: Measure Theory, Integration, and Hilbert Spaces
- 2007: Robert B. Ash: Real Variables with Basic Metric Space Topology
Calculus
- 1656: John Wallis: Arithmetica Infinitorum
- 1669: Isaac Newton: On Analysis by Means of Equations with an Infinite Number of Terms
- 1670: Isaac Barrow: Lectiones Geometricae
- 1696: Guillaume de l'Hôpital: L'Analyse des Infiniment Petits
- 1734: George Berkeley: The Analyst
- 1736: Isaac Newton: The Method of Fluxions and Infinite Series
- 1742: Colin MacLaurin: A Treatise of Fluxions
- 1755: Leonhard Paul Euler: Institutiones Calculi Differentialis
- 1768-94: Leonhard Paul Euler: Institutiones Calculi Integralis
- 1797: Lazare Carnot: Réflexions sur la métaphysique du calcul infinitésimal
- 1800: L.F.A. Arbogast: Du Calcul des Dérivations
- 1896: Joseph Edwards: Integral Calculus for Beginners: With an Introduction to the Study of Differential Equations
- 1933: C.V. Durell and A. Robson: Elementary Calculus: Volume $\text { I }$
- 1934: C.V. Durell and A. Robson: Elementary Calculus: Volume $\text { II }$
- 1934: Richard Courant: Differential and Integral Calculus: Volume $\text { I }$ (translated by E.J. McShane)
- 1937: Richard Courant: Differential and Integral Calculus: Volume $\text { I }$ (2nd ed.) (translated by E.J. McShane)
- 1936: Richard Courant: Differential and Integral Calculus: Volume $\text { II }$ (translated by E.J. McShane)
- 1939: R.P. Gillespie: Integration
- 1946: P. Abbott: Teach Yourself Calculus
- 1958: P.J. Hilton: Differential Calculus
- 1960: P.J. Hilton: Partial Derivatives
- 1966: Walter Ledermann: Multiple Integrals
- 1967: Tom M. Apostol: Calculus Volume 1
- 1967: Michael Spivak: Calculus (4th ed. 2008)
- 1968: Lynn H. Loomis and Shlomo Sternberg: Advanced Calculus
- 1969: Tom M. Apostol: Calculus Volume 2
- 1971: Wilfred Kaplan and Donald J. Lewis: Calculus and Linear Algebra
- 1978: Roland E. Larson and Robert P. Hostetler: Calculus
- 1980: John C. Amazigo and Lester A. Rubenfeld: Advanced Calculus
- 1983: K.G. Binmore: Calculus
- 1997: H.A. Priestley: Introduction to Integration
- 2017: David Acheson: The Calculus Story
Complex Analysis
- 1806: Jean-Robert Argand: Essai sur une manière de représenter les quantités imaginaires dans les constructions géométriques
- 1935: E.T. Copson: An Introduction to the Theory of Functions of a Complex Variable
- 1953: Lars V. Ahlfors: Complex Analysis
- 1960: Walter Ledermann: Complex Numbers
- 1964: Murray R. Spiegel: Theory and Problems of Complex Variables
- 1974: Peter Henrici: Applied and Computational Complex Analysis: Volume $\text { 1 }$
- 1977: Peter Henrici: Applied and Computational Complex Analysis: Volume $\text { 2 }$
- 1977: Serge Lang: Complex Analysis
- 1983: Ian Stewart and David Tall: Complex Analysis (The Hitchhiker's Guide to the Plane)
- 1986: Peter Henrici: Applied and Computational Complex Analysis: Volume $\text { 3 }$
- 1991: Reinhold Remmert: Theory of Complex Functions (2nd ed.)
- 1999: Jerrold E. Marsden and Michael J. Hoffman: Basic Complex Analysis (3rd ed.)
- 2001: Christian Berg: Kompleks funktionsteori
- 2002: Robert E. Greene and Steven G. Krantz: Function Theory of One Complex Variable
- 2004: James Ward Brown and Ruel V. Churchill: Complex Variables and Applications (7th ed.)
- 2005: Eberhard Freitag and Rolf Busam: Complex Analysis
- 2006: Robert E. Greene and Steven G. Krantz: Function Theory of One Complex Variable (3rd ed.)
- 2008: David C. Ullrich: Complex Made Simple
- 2009: Murray R. Spiegel, Seymour Lipschutz, John Schiller and Dennis Spellman: Complex Variables (2nd ed.)
Trigonometric Series
- 1935: Antoni Zygmund: Trigonometrical Series
- 1961: I.N. Sneddon: Fourier Series
- 1968: Peter D. Robinson: Fourier and Laplace Transforms
- 1981: H.J. Nussbaumer: Fast Fourier Transform and Convolution Algorithms
Laplace Transforms
Functional Analysis
- 1927: A.R. Forsyth: Calculus of Variations
- 1946: Gilbert A. Bliss: Lectures on the Calculus of Variations
- 1957: A.N. Kolmogorov and S.V. Fomin: Elements of the Theory of Functions and Functional Analysis: Volume $\text { 1 }$ (translated by Leo F. Boron)
- 1961: A.N. Kolmogorov and S.V. Fomin: Elements of the Theory of Functions and Functional Analysis: Volume $\text { 2 }$ (translated by Leo F. Boron)
- 1962: N.I. Akhiezer: The Calculus of Variations (translated by Aline H. Frink)
- 1963: I.M. Gelfand and S.V. Fomin: Calculus of Variations (translated by Richard A. Silverman)
- 1981: George Leitmann: The Calculus of Variations and Optimal Control
- 1981: Michael Reed and Barry Simon: Methods of Modern Mathematical Physics I: Functional Analysis (Revised ed.)
- 1990: Nino Boccara: Functional Analysis: An Introduction for Physicists
- 1990: John B. Conway: A Course in Functional Analysis
- 1990: Frigyes Riesz and Béla Sz.-Nagy: Functional Analysis (translated by Leo F. Boron)
- 1991: Walter Rudin: Functional Analysis (2nd ed.)
- 1992: Hans Sagan: Introduction to the Calculus of Variations
- 1995: Gert K. Pedersen: Analysis Now (2nd ed.)
- 1996: Georgi E. Shilov: Elementary Functional Analysis
- 1996: Mariano Giaquinta and Stefan Hildebrandt: Calculus of Variations I: The Lagrangian Formalism
- 1996: Mariano Giaquinta and Stefan Hildebrandt: Calculus of Variations II: The Hamiltonian Formalism
- 1997: Reinhold Meise and Dietmar Vogt: Introduction to Functional Analysis
- 1998: George Bachman and Lawrence Narici: Functional Analysis
- 1998: Ram Prakash Kanwal: Generalized Functions: Theory and Technique (2nd ed.)
- 2001: Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant and Václav Zizler: Functional Analysis and Infinite-Dimensional Geometry
- 2002: Peter D. Lax: Functional Analysis
- 2002: Martin Schechter: Principles of Functional Analysis (2nd ed.)
- 2004: Bruce van Brunt: The Calculus of Variations
- 2004: Yuli Eidelman, Vitali Milman and Antonis Tsolomitis: Functional Analysis: An Introduction
- 2004: John A. Burns: Introduction to The Calculus of Variations and Control with Modern Applications
- 2009: Srinivasan Kesavan: Functional Analysis
- 2009: Barbara D. MacCluer: Elementary Functional Analysis
- 2010: Haïm Brezis: Functional Analysis, Sobolev Spaces and Partial Differential Equations
- 2011: Elias M. Stein and Rami Shakarchi: Functional Analysis: An Introduction to Further Topics in Analysis
- 2012: Alberto Bressan: Lecture Notes on Functional Analysis: With Applications to Linear Partial Differential Equations
- 2013: Philippe G. Ciarlet: Linear and Nonlinear Functional Analysis with Applications
- 2013: Francis Clarke: Functional Analysis, Calculus of Variations and Optimal Control
- 2014: Mark Kot: A First Course in the Calculus of Variations
- 2014: Joseph Muscat: Functional Analysis: An Introduction to Metric Spaces, Hilbert Spaces, and Banach Algebras
- 2017: Manfred Einsiedler and Thomas Ward: Functional Analysis, Spectral Theory, and Applications
- 2017: Amol Sasane: A Friendly Approach to Functional Analysis
- 2018: Theo Bühler and Dietmar A. Salamon: Functional Analysis
- 2020: James C. Robinson: Introduction to Functional Analysis
Measure Theory
- 1950: Paul R. Halmos: Measure Theory
- 1953: Marshall E. Munroe: Introduction to Measure and Integration
- 1980: Donald L. Cohn: Measure Theory
- 1981: G. de Barra: Measure Theory and Integration
- 1992: Lawrence C. Evans and Ronald F. Gariepy: Measure Theory and Fine Properties of Functions
- 2001: Christian Berg and Tage Gutmann Madsen: Mål- og integralteori
- 2005: René L. Schilling: Measures, Integrals and Martingales
Dynamical Systems Theory
- 1999: Clark Robinson: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos
- 2002: Michael Brin and Garrett Stuck: Introduction to Dynamical Systems
Special Functions
- 1895: Andrew Gray and G.B. Mathews: A Treatise on Bessel Functions
- 1922: Andrew Gray and G.B. Mathews: A Treatise on Bessel Functions (2nd ed.) (with T.M. MacRobert)
- 1986: Larry C. Andrews: Special Functions for Engineers and Applied Mathematicians
- 1992: Larry C. Andrews: Special Functions of Mathematics for Engineers (second edition of Special Functions for Engineers and Applied Mathematicians from 1985)
- 1999: George E. Andrews, Richard Askey and Ranjan Roy: Special Functions